
Dirk Scherler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9053617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Combined Cosmogenic Nuclides Approach for Determining the Temperatureâ€Dependence of Erosion. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	1.0	2
2	Temporal evolution of headwall erosion rates derived from cosmogenic nuclide concentrations in the medial moraines of Glacier d'Otemma, Switzerland. Earth Surface Processes and Landforms, 2022, 47, 2437-2454.	1.2	3
3	A systematic approach and software for the analysis of point patterns on river networks. Earth Surface Processes and Landforms, 2021, 46, 1847-1862.	1.2	7
4	Sedimentary ancient DNA reveals a threat of warming-induced alpine habitat loss to Tibetan Plateau plant diversity. Nature Communications, 2021, 12, 2995.	5.8	32
5	The Causes of Debris-Covered Glacier Thinning: Evidence for the Importance of Ice Dynamics From Kennicott Glacier, Alaska. Frontiers in Earth Science, 2021, 9, .	0.8	14
6	Tectonic Accretion Controls Erosional Cyclicity in the Himalaya. AGU Advances, 2021, 2, e2021AV000487.	2.3	14
7	Production and Transport of Supraglacial Debris: Insights From Cosmogenic ¹⁰ Be and Numerical Modeling, Chhota Shigri Glacier, Indian Himalaya. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2020JF005586.	1.0	17
8	Glacial influence on late Pleistocene 10Be-derived paleo-erosion rates in the north-western Himalaya, India. Earth and Planetary Science Letters, 2020, 547, 116441.	1.8	10
9	Drainage divide networks – PartÂ1: Identification and ordering in digital elevation models. Earth Surface Dynamics, 2020, 8, 245-259.	1.0	24
10	Drainage divide networks – PartÂ2: Response to perturbations. Earth Surface Dynamics, 2020, 8, 261-274.	1.0	23
11	Divide mobility controls knickpoint migration on the Roan Plateau (Colorado, USA). Geology, 2020, 48, 698-702.	2.0	38
12	Multiproxy Isotopic and Geochemical Analysis of the Siwalik Sediments in NW India: Implication for the Late Cenozoic Tectonic Evolution of the Himalaya. Tectonics, 2019, 38, 120-143.	1.3	19
13	Effects of long soil surface residence times on apparent cosmogenic nuclide denudation rates and burial ages in the Cradle of Humankind, South Africa. Earth Surface Processes and Landforms, 2019, 44, 2968-2981.	1.2	12
14	Cosmogenic ¹⁰ Be in river sediment: where grain size matters and why. Earth Surface Dynamics, 2019, 7, 393-410.	1.0	30
15	Spatiotemporal variation of late Quaternary river incision rates in southeast Tibet, constrained by dating fluvial terraces. Lithosphere, 2018, 10, 662-675.	0.6	30
16	Global Assessment of Supraglacial Debris over Extents. Geophysical Research Letters, 2018, 45, 11,798.	1.5	130
17	Segmentation of the Main Himalayan Thrust Revealed by Lowâ€Temperature Thermochronometry in the Western Indian Himalaya. Tectonics, 2018, 37, 2710-2726.	1.3	14
18	Testing monsoonal controls on bedrock river incision in the Himalaya and Eastern Tibet with a stochasticâ€ŧhreshold stream power model. Journal of Geophysical Research F: Earth Surface, 2017, 122, 1389-1429.	1.0	54

DIRK SCHERLER

#	Article	IF	CITATIONS
19	Perturbation of fluvial sediment fluxes following the 2008 Wenchuan earthquake. Earth Surface Processes and Landforms, 2017, 42, 2611-2622.	1.2	52
20	Bumps in river profiles: uncertainty assessment and smoothing using quantile regression techniques. Earth Surface Dynamics, 2017, 5, 821-839.	1.0	109
21	Climate-driven sediment aggradation and incision since the late Pleistocene in the NW Himalaya, India. Earth and Planetary Science Letters, 2016, 449, 321-331.	1.8	50
22	Glacial isostatic uplift of the European Alps. Nature Communications, 2016, 7, 13382.	5.8	62
23	Climate-change versus landslide origin of fill terraces in a rapidly eroding bedrock landscape: San Gabriel River, California. Bulletin of the Geological Society of America, 2016, 128, 1228-1248.	1.6	19
24	Climatic controls on debrisâ€flow activity and sediment aggradation: The Del Medio fan, NW Argentina. Journal of Geophysical Research F: Earth Surface, 2016, 121, 2424-2445.	1.0	18
25	Holocene internal shortening within the northwest Subâ€Himalaya: Outâ€ofâ€sequence faulting of the Jwalamukhi Thrust, India. Tectonics, 2016, 35, 2677-2697.	1.3	36
26	Time scale bias in erosion rates of glaciated landscapes. Science Advances, 2016, 2, e1600204.	4.7	56
27	Rapid Last Glacial Maximum deglaciation in the Indian Himalaya coeval with midlatitude glaciers: New insights from ¹⁰ Beâ€dating of iceâ€polished bedrock surfaces in the Chandra Valley, NW Himalaya. Geophysical Research Letters, 2016, 43, 1589-1597.	1.5	42
28	Landscape response to late Pleistocene climate change in NW Argentina: Sediment flux modulated by basin geometry and connectivity. Journal of Geophysical Research F: Earth Surface, 2016, 121, 392-414.	1.0	42
29	Differentiating between rain, snow, and glacier contributions to river discharge in the western Himalaya using remote-sensing data and distributed hydrological modeling. Advances in Water Resources, 2016, 88, 152-169.	1.7	70
30	Estimating the fill thickness and bedrock topography in intermontane valleys using artificial neural neural neural neural neural of Geophysical Research F: Earth Surface, 2015, 120, 1301-1320.	1.0	17
31	Increased late Pleistocene erosion rates during fluvial aggradation in the Garhwal Himalaya, northern India. Earth and Planetary Science Letters, 2015, 428, 255-266.	1.8	67
32	Effect of vegetation cover on millennial-scale landscape denudation rates in East Africa. Lithosphere, 2015, 7, 408-420.	0.6	58
33	Response to Comment on "Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in Southern Tibet― Science, 2015, 349, 799-799.	6.0	16
34	Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surface Dynamics, 2014, 2, 1-7.	1.0	678
35	Ice dams, outburst floods, and glacial incision at the western margin of the Tibetan Plateau: A >100 k.y. chronology from the Shyok Valley, Karakoram. Bulletin of the Geological Society of America, 2014, 126, 738-758.	1.6	33
36	Climatic limits to headwall retreat in the Khumbu Himalaya, eastern Nepal. Geology, 2014, 42, 1019-1022.	2.0	51

DIRK SCHERLER

#	Article	IF	CITATIONS
37	Postglacial denudation of western Tibetan Plateau margin outpaced by long-term exhumation. Bulletin of the Geological Society of America, 2014, 126, 1580-1594.	1.6	32
38	Tectonic control on ¹⁰ Beâ€derived erosion rates in the Garhwal Himalaya, India. Journal of Geophysical Research F: Earth Surface, 2014, 119, 83-105.	1.0	141
39	Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in Southern Tibet. Science, 2014, 346, 978-981.	6.0	171
40	Multiple fluvial processes detected by riverside seismic and infrasound monitoring of a controlled flood in the Grand Canyon. Geophysical Research Letters, 2013, 40, 4858-4863.	1.5	90
41	Large surface velocity fluctuations of Biafo Glacier, central Karakoram, at high spatial and temporal resolution from optical satellite images. Journal of Glaciology, 2012, 58, 569-580.	1.1	53
42	Climatic and geologic controls on suspended sediment flux in the Sutlej River Valley, western Himalaya. Hydrology and Earth System Sciences, 2012, 16, 2193-2217.	1.9	72
43	Hillslopeâ€glacier coupling: The interplay of topography and glacial dynamics in High Asia. Journal of Geophysical Research, 2011, 116, .	3.3	117
44	Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience, 2011, 4, 156-159.	5.4	812
45	Seasonal precipitation gradients and their impact on fluvial sediment flux in the Northwest Himalaya. Geomorphology, 2010, 118, 13-21.	1.1	140
46	Timing and extent of late Quaternary glaciation in the western Himalaya constrained by 10Be moraine dating in Garhwal, India. Quaternary Science Reviews, 2010, 29, 815-831.	1.4	82
47	Glacier-surface velocities in alpine terrain from optical satellite imagery—Accuracy improvement and quality assessment. Remote Sensing of Environment, 2008, 112, 3806-3819.	4.6	286
48	Structural record of an oblique impact. Earth and Planetary Science Letters, 2006, 248, 43-53.	1.8	38
49	Structure and formation of a central uplift: A case study at the Upheaval Dome impact crater, Utah. , 2005, , .		29
50	Structure and impact indicators of the Cretaceous sequence of the ICDP drill core Yaxcopoilâ€1, Chicxulub impact crater, Mexico. Meteoritics and Planetary Science, 2004, 39, 1069-1088.	0.7	31
51	Short Communication: TopoToolbox 2 $\hat{a} \in \raftice$ an efficient and user-friendly tool for Earth surface sciences. , 0, , .		5