
Ryo Misaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9053395/publications.pdf Version: 2024-02-01

RVO MISAKI

#	Article	IF	CITATIONS
1	Plant cultured cells expressing human beta1,4-galactosyltransferase secrete glycoproteins with galactose-extended N-linked glycans. Glycobiology, 2003, 13, 199-205.	2.5	48
2	Expression of human CMP-N-acetylneuraminic acid synthetase and CMP-sialic acid transporter in tobacco suspension-cultured cell. Biochemical and Biophysical Research Communications, 2006, 339, 1184-1189.	2.1	42
3	Dengue virus neutralization and antibody-dependent enhancement activities of human monoclonal antibodies derived from dengue patients at acute phase of secondary infection. Antiviral Research, 2013, 98, 423-431.	4.1	41
4	The production of human glucocerebrosidase in glycoâ€engineered <i><scp>N</scp>icotiana benthamiana</i> plants. Plant Biotechnology Journal, 2016, 14, 1682-1694.	8.3	36
5	Delta-9 fatty acid desaturase overexpression enhanced lipid production and oleic acid content in Rhodosporidium toruloides for preferable yeast lipid production. Journal of Bioscience and Bioengineering, 2019, 127, 430-440.	2.2	36
6	Glycoproteins Secreted from Suspension-cultured Tobacco BY2 Cells have Distinct Glycan Structures from Intracellular Glycoproteins. Bioscience, Biotechnology and Biochemistry, 2001, 65, 2482-2488.	1.3	31
7	Sialylation potentials of the silkworm, <i>Bombyx mori</i> ; <i>B. mori</i> possesses an active α2,6-sialyltransferase. Glycobiology, 2015, 25, 1441-1453.	2.5	31
8	Arabidopsis β1,2-xylosyltransferase: Substrate specificity and participation in the plant-specific N-glycosylation pathway. Journal of Bioscience and Bioengineering, 2012, 113, 48-54.	2.2	30
9	Substrate preference of citrus naringenin rhamnosyltransferases and their application to flavonoid glycoside production in fission yeast. Applied Microbiology and Biotechnology, 2016, 100, 687-696.	3.6	30
10	N-linked glycan structures of mouse interferon-β produced by Bombyx mori larvae. Biochemical and Biophysical Research Communications, 2003, 311, 979-986.	2.1	28
11	The combination of plant translational enhancers and terminator increase the expression of human glucocerebrosidase in Nicotiana benthamiana plants. Plant Science, 2015, 240, 41-49.	3.6	24
12	Development of a sufficient and effective procedure for transformation of an oleaginous yeast, Rhodosporidium toruloides DMKU3-TK16. Current Genetics, 2017, 63, 359-371.	1.7	21
13	Core-fucosylation plays a pivotal role in hepatitis B pseudo virus infection: a possible implication for HBV glycotherapy. Glycobiology, 2016, 26, 1180-1189.	2.5	17
14	Production of initial-stage eukaryotic N-glycan and its protein glycosylation in Escherichia coli. Journal of Bioscience and Bioengineering, 2015, 119, 399-405.	2.2	14
15	Ethanol and H2O2 stresses enhance lipid production in an oleaginous <i>Rhodotorula toruloides</i> thermotolerant mutant L1-1. FEMS Yeast Research, 2020, 20, .	2.3	13
16	Rab11-mediated post-Golgi transport of the sialyltransferase ST3GAL4 suggests a new mechanism for regulating glycosylation. Journal of Biological Chemistry, 2021, 296, 100354.	3.4	13
17	Functional characterization and overexpression of Δ12-desaturase in the oleaginous yeast Rhodotorula toruloides for production of linoleic acid-rich lipids. Journal of Bioscience and Bioengineering, 2021, 131, 631-639.	2.2	13
18	Transcriptome sequencing and identification of cytochrome P450 monooxygenases involved in the biosynthesis of maslinic acid and corosolic acid in <i>Avicennia marina</i> . Plant Biotechnology, 2018, 35, 341-348.	1.0	11

Ryo Misaki

#	Article	IF	CITATIONS
19	Enhancement of glycosylation by stable co-expression of two sialylation-related enzymes on Chinese hamster ovary cells. Journal of Bioscience and Bioengineering, 2018, 126, 102-110.	2.2	10
20	The Production of Human β-Glucocerebrosidase in Nicotiana benthamiana Root Culture. International Journal of Molecular Sciences, 2018, 19, 1972.	4.1	10
21	N-terminal vacuolar sorting signal at the mouse antibody alters the N-linked glycosylation pattern in suspension-cultured tobacco BY2 cells. Journal of Bioscience and Bioengineering, 2011, 112, 476-484.	2.2	9
22	Characterization of almond α-mannosidase and its application for structure analysis of sugar chain. Journal of Bioscience and Bioengineering, 2003, 96, 187-192.	2.2	8
23	Cloning and characterization of cytidine monophosphate-3-deoxy-d-manno-octulosonate synthetase from Arabidopsis thaliana. Journal of Bioscience and Bioengineering, 2009, 108, 527-529.	2.2	8
24	Fucosyltransferases produce N -glycans containing core l -galactose. Biochemical and Biophysical Research Communications, 2017, 483, 658-663.	2.1	7
25	Cell surface N-glycan alteration in HepAD38 cell lines expressing Hepatitis B virus. Virus Research, 2017, 238, 101-109.	2.2	7
26	Enhancement of sialylation in rIgG in glyco-engineered Chinese hamster ovary cells. Cytotechnology, 2020, 72, 343-355.	1.6	7
27	Recombinant production and characterization of human anti-influenza virus monoclonal antibodies identified from hybridomas fused with human lymphocytes. Biologicals, 2016, 44, 394-402.	1.4	6
28	<i>Arabidopsis thaliana</i> α1,2â€ <scp>l</scp> â€fucosyltransferase catalyzes the transfer of <scp>l</scp> â€galactose to xyloglucan oligosaccharides. FEBS Letters, 2019, 593, 187-194.	2.8	6
29	Isolation of a thermotolerant Rhodosporidium toruloides DMKU3-TK16 mutant and its fatty acid profile at high temperature. FEMS Microbiology Letters, 2018, 365, .	1.8	6
30	Fully Human Monoclonal Antibodies Effectively Neutralizing Botulinum Neurotoxin Serotype B. Toxins, 2020, 12, 302.	3.4	6
31	Antibody germline characterization of cross-neutralizing human IgGs against 4 serotypes of dengue virus. Biochemical and Biophysical Research Communications, 2014, 446, 475-480.	2.1	5
32	Bombyx mori β1,4-N-acetylgalactosaminyltransferase possesses relaxed donor substrate specificity in N-glycan synthesis. Scientific Reports, 2021, 11, 5505.	3.3	5
33	Transient Production of Human β-Glucocerebrosidase With Mannosidic-Type N-Glycan Structure in Glycoengineered Nicotiana benthamiana Plants. Frontiers in Plant Science, 2021, 12, 683762.	3.6	4
34	Biochemical characterization of Arabidopsis clade F polygalacturonase shows a substrate preference toward oligogalacturonic acids. Journal of Bioscience and Bioengineering, 2022, 133, 1-7.	2.2	4
35	Structure and Biological Functions of Plant Glycans and Polysaccharides. , 2021, , 93-109.		3
36	Direct evidence of cytosolic PNGase activity in <i>Arabidopsis thaliana</i> : <i>in vitro</i> assay system for plant cPNGase activity. Bioscience, Biotechnology and Biochemistry, 2021, 85, 1460-1463.	1.3	3

Ryo Misaki

#	Article	IF	CITATIONS
37	Production of Human Acid-Alpha Glucosidase With a Paucimannose Structure by Glycoengineered Arabidopsis Cell Culture. Frontiers in Plant Science, 2021, 12, 703020.	3.6	3
38	Characterization of Bombyx mori N-acetylglucosaminyltransferase II splicing variants. Biochemical and Biophysical Research Communications, 2020, 529, 404-410.	2.1	2
39	Improved assay system for acidic peptide: N-glycanase (aPNGase) activity in plant extracts. Analytical Biochemistry, 2021, 634, 114367.	2.4	2
40	St6gal1 knockdown alters HBV life cycle in HepAD38 cells. Biochemical and Biophysical Research Communications, 2018, 503, 1841-1847.	2.1	1
41	Establishment of serum-free adapted Chinese hamster ovary cells with double knockout of GDP-mannose-4,6-dehydratase and GDP-fucose transporter. Cytotechnology, 2022, 74, 163-179.	1.6	1
42	Transglycosylation toward naringenin-7-O-glucoside using an N180H mutant of Coprinopsis cinerea endo-l²-N-acetylglucosaminidase. Biochemical and Biophysical Research Communications, 2020, 530, 155-159.	2.1	0
43	Production of recombinant β-glucocerebrosidase in wild-type and glycoengineered transgenic Nicotiana benthamiana root cultures with different N-glycan profiles. Journal of Bioscience and Bioengineering, 2022, 133, 481-488.	2.2	Ο
44	Analysis of <i>N</i> -glycan profile of Arabidopsis <i>alg3</i> cell culture. Plant Biotechnology, 2021, 38, 463-467.	1.0	0