List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9053316/publications.pdf Version: 2024-02-01



DETED THOMSEN

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Biological factors contributing to failures of osseointegrated oral implants, (I). Success criteria and epidemiology. European Journal of Oral Sciences, 1998, 106, 527-551.                                    | 0.7 | 932       |
| 2  | Biological factors contributing to failures of osseointegrated oral implants, (II). Etiopathogenesis.<br>European Journal of Oral Sciences, 1998, 106, 721-764.                                                 | 0.7 | 913       |
| 3  | Titanium in Medicine. Engineering Materials, 2001, , .                                                                                                                                                          | 0.3 | 689       |
| 4  | Aseptic loosening, not only a question of wear: A review of different theories. Monthly Notices of the Royal Astronomical Society: Letters, 2006, 77, 177-197.                                                  | 1.2 | 511       |
| 5  | Guided bone regeneration: materials and biological mechanisms revisited. European Journal of Oral Sciences, 2017, 125, 315-337.                                                                                 | 0.7 | 468       |
| 6  | Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials, 1996, 17, 605-616.           | 5.7 | 324       |
| 7  | Bone response to surface modified titanium implants: studies on electropolished implants with different oxide thicknesses and morphology. Biomaterials, 1994, 15, 1062-1074.                                    | 5.7 | 256       |
| 8  | Osseointegration and current interpretations of the bone-implant interface. Acta Biomaterialia, 2019, 84, 1-15.                                                                                                 | 4.1 | 200       |
| 9  | Titanium oral implants: surface characteristics, interface biology and clinical outcome. Journal of the Royal Society Interface, 2010, 7, S515-27.                                                              | 1.5 | 183       |
| 10 | Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored<br>implants — Is one truly better than the other?. Materials Science and Engineering C, 2016, 62, 960-966.        | 3.8 | 182       |
| 11 | Monocyte Exosomes Stimulate the Osteogenic Gene Expression of Mesenchymal Stem Cells. PLoS ONE, 2013, 8, e75227.                                                                                                | 1.1 | 177       |
| 12 | Structure of the interface between rabbit cortical bone and implants of gold, zirconium and titanium.<br>Journal of Materials Science: Materials in Medicine, 1997, 8, 653-665.                                 | 1.7 | 164       |
| 13 | 3D printed Ti6Al4V implant surface promotes bone maturation and retains a higher density of less aged osteocytes at the bone-implant interface. Acta Biomaterialia, 2016, 30, 357-367.                          | 4.1 | 163       |
| 14 | Biomechanical characterization of osseointegration during healing: an experimental in vivo study in the rat. Biomaterials, 1997, 18, 969-978.                                                                   | 5.7 | 158       |
| 15 | Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach. Stem Cell Research, 2014, 12, 153-165.                       | 0.3 | 155       |
| 16 | Barrier membranes: More than the barrier effect?. Journal of Clinical Periodontology, 2019, 46, 103-123.                                                                                                        | 2.3 | 148       |
| 17 | Response of rat osteoblast-like cells to microstructured model surfaces in vitro. Biomaterials, 2003, 24, 649-654.                                                                                              | 5.7 | 135       |
| 18 | The inflammatory cell influx and cytokines changes during transition from acute inflammation to fibrous repair around implanted materials. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 669-687. | 1.9 | 133       |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Bone response to laser-induced micro- and nano-size titanium surface features. Nanomedicine:<br>Nanotechnology, Biology, and Medicine, 2011, 7, 220-227.                                                                               | 1.7 | 132       |
| 20 | Inhibitory effects of amide local anaesthetics on stimulusâ€induced human leukocyte metabolic<br>activation, LTB <sub>4</sub> release and ILâ€1 secretion <i>in vitro</i> . Acta Anaesthesiologica<br>Scandinavica, 1993, 37, 159-165. | 0.7 | 131       |
| 21 | Influence of Lidocaine on Leukocyte Function in the Surgical Wound. Anesthesiology, 1992, 77, 74-78.                                                                                                                                   | 1.3 | 126       |
| 22 | Mesenchymal stem cell-derived exosomes have altered microRNA profiles and induce osteogenic differentiation depending on the stage of differentiation. PLoS ONE, 2018, 13, e0193059.                                                   | 1.1 | 126       |
| 23 | Advances in dental implant materials and tissue regeneration. Periodontology 2000, 2006, 41, 136-156.                                                                                                                                  | 6.3 | 124       |
| 24 | Guided bone regeneration is promoted by the molecular events in the membrane compartment.<br>Biomaterials, 2016, 84, 167-183.                                                                                                          | 5.7 | 122       |
| 25 | Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting. Acta Biomaterialia, 2016, 36, 296-309.                                                       | 4.1 | 120       |
| 26 | Integration of Titanium Implants in Irradiated Bone Histologic and Clinical Study. Annals of Otology,<br>Rhinology and Laryngology, 1988, 97, 337-340.                                                                                 | 0.6 | 117       |
| 27 | Structure of the bone-titanium interface in retrieved clinical oral implants. Clinical Oral Implants Research, 1991, 2, 103-111.                                                                                                       | 1.9 | 113       |
| 28 | Endotoxin and interleukin-1α in the cervical mucus and vaginal fluid of pregnant women with bacterial vaginosis. American Journal of Obstetrics and Gynecology, 1993, 169, 1161-1166.                                                  | 0.7 | 110       |
| 29 | Macrophage interactions with modified material surfaces. Current Opinion in Solid State and Materials Science, 2001, 5, 163-176.                                                                                                       | 5.6 | 110       |
| 30 | Leukocyte Supplementation Increases the Luteinizing Hormone-Induced Ovulation Rate in the in Vitro-Perfused Rat Ovary1. Biology of Reproduction, 1991, 44, 791-797.                                                                    | 1.2 | 105       |
| 31 | Early tissue response to titanium implants inserted in rabbit cortical bone. Journal of Materials<br>Science: Materials in Medicine, 1993, 4, 240-250.                                                                                 | 1.7 | 105       |
| 32 | The stimulation of an osteogenic response by classical monocyte activation. Biomaterials, 2011, 32, 8190-8204.                                                                                                                         | 5.7 | 105       |
| 33 | The role of whole blood in thrombin generation in contact with various titanium surfaces.<br>Biomaterials, 2007, 28, 966-974.                                                                                                          | 5.7 | 103       |
| 34 | Stainless steel screws coated with bisphosphonates gave stronger fixation and more surrounding bone. Histomorphometry in rats. Bone, 2008, 42, 365-371.                                                                                | 1.4 | 103       |
| 35 | Long-term biocompatibility and osseointegration of electron beam melted, free-form–fabricated solid and porous titanium alloy: Experimental studies in sheep. Journal of Biomaterials Applications, 2013, 27, 1003-1016.               | 1.2 | 103       |
| 36 | Guided bone regeneration using resorbable membrane and different bone substitutes: Early histological and molecular events. Acta Biomaterialia, 2016, 29, 409-423.                                                                     | 4.1 | 98        |

| #  | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Surface analysis of failed oral titanium implants. , 1999, 48, 559-568.                                                                                                                                                                                                  |     | 90        |
| 38 | Electron beamâ€melted, freeâ€formâ€fabricated titanium alloy implants: Material surface characterization<br>and early bone response in rabbits. Journal of Biomedical Materials Research - Part B Applied<br>Biomaterials, 2009, 90B, 35-44.                             | 1.6 | 89        |
| 39 | Integrin and chemokine receptor gene expression in implant-adherent cells during early osseointegration. Journal of Materials Science: Materials in Medicine, 2010, 21, 969-980.                                                                                         | 1.7 | 79        |
| 40 | Laser-Modified Surface Enhances Osseointegration and Biomechanical Anchorage of Commercially<br>Pure Titanium Implants for Bone-Anchored Hearing Systems. PLoS ONE, 2016, 11, e0157504.                                                                                  | 1.1 | 78        |
| 41 | Ultrastructure of the bone-titanium interface in rabbits. Journal of Materials Science: Materials in<br>Medicine, 1992, 3, 262-271.                                                                                                                                      | 1.7 | 77        |
| 42 | Biomineralized strontium-substituted apatite/titanium dioxide coating on titanium surfaces. Acta<br>Biomaterialia, 2010, 6, 1591-1600.                                                                                                                                   | 4.1 | 77        |
| 43 | Histopathologic Observations on Late Oral Implant Failures. Clinical Implant Dentistry and Related<br>Research, 2000, 2, 18-32.                                                                                                                                          | 1.6 | 76        |
| 44 | Characterization of the Surface Properties of Commercially Available Dental Implants Using Scanning<br>Electron Microscopy, Focused Ion Beam, and High-Resolution Transmission Electron Microscopy.<br>Clinical Implant Dentistry and Related Research, 2008, 10, 11-22. | 1.6 | 75        |
| 45 | Cell and soft tissue interactions with methyl- and hydroxyl-terminated alkane thiols on gold surfaces. Biomaterials, 1997, 18, 1059-1068.                                                                                                                                | 5.7 | 70        |
| 46 | The correlation between gene expression of proinflammatory markers and bone formation during osseointegration with titanium implants. Biomaterials, 2011, 32, 374-386.                                                                                                   | 5.7 | 69        |
| 47 | Difference in tissue response to nitrogen-ion-implanted titanium and c.p. titanium in the abdominal wall of the rat. Journal of Biomedical Materials Research Part B, 1990, 24, 847-860.                                                                                 | 3.0 | 67        |
| 48 | Morphologic and immunohistochemical observations of tissues surrounding retrieved transvenous pacemaker leads. Journal of Biomedical Materials Research Part B, 2002, 63, 548-558.                                                                                       | 3.0 | 67        |
| 49 | A 5-year follow-up comparative analysis of the efficacy of various osseointegrated dental implant systems: a systematic review of randomized controlled clinical trials. International Journal of Oral and Maxillofacial Implants, 2005, 20, 557-68.                     | 0.6 | 67        |
| 50 | Human Embryonic Mesodermal Progenitors Highly Resemble Human Mesenchymal Stem Cells and<br>Display High Potential for Tissue Engineering Applications. Tissue Engineering - Part A, 2010, 16,<br>2161-2182.                                                              | 1.6 | 64        |
| 51 | Long-term biocompatibility and osseointegration of electron beam melted, free-form–fabricated solid<br>and porous titanium alloy: Experimental studies in sheep. Journal of Biomaterials Applications, 2013, 27,<br>1003-1016.                                           | 1.2 | 64        |
| 52 | Bone response to a novel Ti–Ta–Nb–Zr alloy. Acta Biomaterialia, 2015, 20, 165-175.                                                                                                                                                                                       | 4.1 | 64        |
| 53 | A Review of the Impact of Implant Biomaterials on Osteocytes. Journal of Dental Research, 2018, 97, 977-986.                                                                                                                                                             | 2.5 | 62        |
| 54 | Hydroxyapatite coating affects the Wnt signaling pathway during peri-implant healing in vivo. Acta<br>Biomaterialia, 2014, 10, 1451-1462.                                                                                                                                | 4.1 | 60        |

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The influence of controlled surface nanotopography on the early biological events of osseointegration. Acta Biomaterialia, 2017, 53, 559-571.                                                                                                             | 4.1 | 59        |
| 56 | Method for ultrastructural studies of the intact tissue-metal interface. Biomaterials, 1990, 11, 596-601.                                                                                                                                                 | 5.7 | 58        |
| 57 | Bone response to surface modified titanium implants - studies on the tissue response after 1 year to<br>machined and electropolished implants with different oxide thicknesses. Journal of Materials Science:<br>Materials in Medicine, 1997, 8, 721-729. | 1.7 | 58        |
| 58 | IL-1α, IL-1β and TNF-α secretion during in vivo/ex vivo cellular interactions with titanium and copper.<br>Biomaterials, 2003, 24, 461-468.                                                                                                               | 5.7 | 56        |
| 59 | Preparation of multilayer plasma protein films on silicon by EDC/NHS coupling chemistry. Colloids and Surfaces B: Biointerfaces, 2003, 28, 261-272.                                                                                                       | 2.5 | 56        |
| 60 | Technique for preparation and characterization in crossâ€section of oral titanium implant surfaces<br>using focused ion beam and transmission electron microscopy. Journal of Biomedical Materials<br>Research - Part A, 2008, 87A, 1003-1009.            | 2.1 | 56        |
| 61 | Strontium-Doped Calcium Phosphate and Hydroxyapatite Granules Promote Different Inflammatory and Bone Remodelling Responses in Normal and Ovariectomised Rats. PLoS ONE, 2013, 8, e84932.                                                                 | 1.1 | 55        |
| 62 | The bone-implant interface – nanoscale analysis of clinically retrieved dental implants. Nanomedicine:<br>Nanotechnology, Biology, and Medicine, 2014, 10, 1729-1737.                                                                                     | 1.7 | 55        |
| 63 | Hydroxylapatite growth on single-crystal rutile substrates. Biomaterials, 2008, 29, 3317-3323.                                                                                                                                                            | 5.7 | 54        |
| 64 | Light and transmission electron microscopy used to study the tissue morphology close to implants.<br>Biomaterials, 1985, 6, 421-424.                                                                                                                      | 5.7 | 53        |
| 65 | Immunohistochemistry of soft tissues surrounding late failures of Brånemark implants. Clinical Oral<br>Implants Research, 1997, 8, 352-366.                                                                                                               | 1.9 | 53        |
| 66 | Adhesion, apoptosis and cytokine release of human mononuclear cells cultured on degradable poly(urethane urea), polystyrene and titanium in vitro. Biomaterials, 2003, 24, 2843-2852.                                                                     | 5.7 | 53        |
| 67 | Exosomes influence the behavior of human mesenchymal stem cells on titanium surfaces.<br>Biomaterials, 2020, 230, 119571.                                                                                                                                 | 5.7 | 53        |
| 68 | In vivo cell recruitment, cytokine release and chemiluminescence response at gold, and thiol functionalized surfaces. Biomaterials, 1999, 20, 2123-2137.                                                                                                  | 5.7 | 52        |
| 69 | In vivo cytokine secretion and NF-l̂ <sup>®</sup> B activation around titanium and copper implants. Biomaterials, 2005, 26, 519-527.                                                                                                                      | 5.7 | 52        |
| 70 | Immunohistochemical studies on the distribution of albumin, fibrinogen, fibronectin, IgG and collagen around PTFE and titanium implants. Biomaterials, 1996, 17, 1779-1786.                                                                               | 5.7 | 51        |
| 71 | Nanostructured model implants for in vivo studies: influence of well-defined nanotopography on de novo bone formation on titanium implants. International Journal of Nanomedicine, 2011, 6, 3415.                                                         | 3.3 | 51        |
| 72 | Failure patterns of four osseointegrated oral implant systems. Journal of Materials Science:<br>Materials in Medicine, 1997, 8, 843-847.                                                                                                                  | 1.7 | 50        |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Biomechanical, histological, and ultrastructural analyses of laser micro―and nanoâ€structured<br>titanium alloy implants: A study in rabbit. Journal of Biomedical Materials Research - Part A, 2010, 92A,<br>1476-1486.                      | 2.1 | 50        |
| 74 | <i>In vivo</i> gene expression in response to anodically oxidized versus machined titanium implants.<br>Journal of Biomedical Materials Research - Part A, 2010, 92A, 1552-1566.                                                              | 2.1 | 50        |
| 75 | Biomechanical, histological and ultrastructural analyses of laser micro―and nanoâ€structured<br>titanium implant after 6 months in rabbit. Journal of Biomedical Materials Research - Part B Applied<br>Biomaterials, 2011, 97B, 289-298.     | 1.6 | 50        |
| 76 | Fibrous capsule formation around titanium and copper. Journal of Biomedical Materials Research -<br>Part A, 2008, 85A, 888-896.                                                                                                               | 2.1 | 49        |
| 77 | Premixed acidic calcium phosphate cement: Characterization of strength and microstructure. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 93B, 436-441.                                                        | 1.6 | 49        |
| 78 | Implants in the Abdominal Wall of the Rat. Scandinavian Journal of Plastic and Reconstructive Surgery, 1986, 20, 173-182.                                                                                                                     | 0.3 | 47        |
| 79 | Mesenchymal stem cell–derived small extracellular vesicles and bone regeneration. Basic and Clinical Pharmacology and Toxicology, 2021, 128, 18-36.                                                                                           | 1.2 | 47        |
| 80 | Osteogenic Potential of Human Mesenchymal Stem Cells and Human Embryonic Stem Cell-Derived<br>Mesodermal Progenitors: A Tissue Engineering Perspective. Tissue Engineering - Part A, 2010, 16,<br>3413-3426.                                  | 1.6 | 46        |
| 81 | High-Resolution Visualization of the Osteocyte Lacuno-Canalicular Network Juxtaposed to the<br>Surface of Nanotextured Titanium Implants in Human. ACS Biomaterials Science and Engineering, 2015,<br>1, 305-313.                             | 2.6 | 45        |
| 82 | A 15-year follow-up of transfemoral amputees with bone-anchored transcutaneous prostheses. Bone<br>and Joint Journal, 2020, 102-B, 55-63.                                                                                                     | 1.9 | 45        |
| 83 | Short-Term Bone Response to Titanium Implants Coated with Thin Radiofrequent Magnetron-Sputtered<br>Hydroxyapatite in Rabbits. Clinical Implant Dentistry and Related Research, 2003, 5, 241-253.                                             | 1.6 | 44        |
| 84 | Bone Response Inside Free-Form Fabricated Macroporous Hydroxyapatite Scaffolds with and without<br>an Open Microporosity. Clinical Implant Dentistry and Related Research, 2007, 9, 79-88.                                                    | 1.6 | 44        |
| 85 | The role of well-defined nanotopography of titanium implants on osseointegration: cellular<br>and molecular events in vivo. International Journal of Nanomedicine, 2016, 11, 1367.                                                            | 3.3 | 44        |
| 86 | Micrometer-Sized Magnesium Whitlockite Crystals in Micropetrosis of Bisphosphonate-Exposed<br>Human Alveolar Bone. Nano Letters, 2017, 17, 6210-6216.                                                                                         | 4.5 | 44        |
| 87 | Commercially pure titanium and Ti6Al4V implants with and without nitrogen-ion implantation: surface characterization and quantitative studies in rabbit cortical bone. Journal of Materials Science: Materials in Medicine, 1993, 4, 132-141. | 1.7 | 43        |
| 88 | Osseointegration of titanium with an antimicrobial nanostructured noble metal coating.<br>Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 1048-1056.                                                                            | 1.7 | 43        |
| 89 | The role of implant surface modifications, shape and material on the success of osseointegrated dental implants. A Cochrane systematic review. European journal of prosthodontics and restorative dentistry, The, 2005, 13, 15-31.            | 0.3 | 43        |
| 90 | Bone tissue reactions to biomimetic ion-substituted apatite surfaces on titanium implants. Journal of the Royal Society Interface, 2012, 9, 1615-1624.                                                                                        | 1.5 | 42        |

| #   | Article                                                                                                                                                                                                                                                       | lF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Biofilm formation and antimicrobial susceptibility of staphylococci and enterococci from<br>osteomyelitis associated with percutaneous orthopaedic implants. Journal of Biomedical Materials<br>Research - Part B Applied Biomaterials, 2017, 105, 2630-2640. | 1.6 | 42        |
| 92  | A Novel Class of Injectable Bioceramics That Glue Tissues and Biomaterials. Materials, 2018, 11, 2492.                                                                                                                                                        | 1.3 | 42        |
| 93  | Morphological studies on machined implants of commercially pure titanium and titanium alloy<br>(Ti6Al4V) in the rabbit. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009,<br>91B, 309-319.                                        | 1.6 | 41        |
| 94  | The clinical, radiological, microbiological, and molecular profile of the skinâ€penetration site of<br>transfemoral amputees treated with boneâ€anchored prostheses. Journal of Biomedical Materials<br>Research - Part A, 2017, 105, 578-589.                | 2.1 | 41        |
| 95  | Antimicrobial Peptide-Functionalized Mesoporous Hydrogels. ACS Biomaterials Science and Engineering, 2021, 7, 1693-1702.                                                                                                                                      | 2.6 | 41        |
| 96  | Electron microscopic observations on the soft tissue around clinical long-term percutaneous titanium implants. Biomaterials, 1995, 16, 83-90.                                                                                                                 | 5.7 | 40        |
| 97  | Forearm bone-anchored amputation prosthesis: A case study on the osseointegration. Monthly<br>Notices of the Royal Astronomical Society: Letters, 2008, 79, 78-85.                                                                                            | 1.2 | 40        |
| 98  | Free form fabricated features on CoCr implants with and without hydroxyapatite coating in vivo: a comparative study of bone contact and bone growth induction. Journal of Materials Science: Materials in Medicine, 2011, 22, 899-906.                        | 1.7 | 40        |
| 99  | Osteogenic response of human mesenchymal stem cells to well-defined nanoscale topography in vitro. International Journal of Nanomedicine, 2014, 9, 2499.                                                                                                      | 3.3 | 40        |
| 100 | Bone–titanium oxide interface in humans revealed by transmission electron microscopy and electron tomography. Journal of the Royal Society Interface, 2012, 9, 396-400.                                                                                       | 1.5 | 39        |
| 101 | Free-Form-Fabricated Commercially Pure Ti and Ti6Al4V Porous Scaffolds Support the Growth of<br>Human Embryonic Stem Cell-Derived Mesodermal Progenitors. Scientific World Journal, The, 2012,<br>2012, 1-14.                                                 | 0.8 | 39        |
| 102 | Immunohistochemical study of the soft tissue around long-term skinpenetrating titanium implants.<br>Biomaterials, 1995, 16, 611-616.                                                                                                                          | 5.7 | 36        |
| 103 | Bioceramic Implant Induces Bone Healing of Cranial Defects. Plastic and Reconstructive Surgery -<br>Global Open, 2015, 3, e491.                                                                                                                               | 0.3 | 36        |
| 104 | In situ bone regeneration of large cranial defects using synthetic ceramic implants with a tailored composition and design. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26660-26671.                          | 3.3 | 36        |
| 105 | Experience with Percutaneous Titanium Implants in the Head and Neck: A Clinical and Histological Study. Journal of Investigative Surgery, 1989, 2, 7-16.                                                                                                      | 0.6 | 35        |
| 106 | Visualizing biointerfaces in three dimensions: electron tomography of the bone–hydroxyapatite<br>interface. Journal of the Royal Society Interface, 2010, 7, 1497-1501.                                                                                       | 1.5 | 35        |
| 107 | Oxidized Titanium Implants Enhance Osseointegration via Mechanisms Involving<br><scp>RANK</scp> / <scp>RANKL</scp> / <scp>OPG</scp> Regulation. Clinical Implant Dentistry and<br>Related Research, 2015, 17, e486-500.                                       | 1.6 | 34        |
| 108 | Resorbable and Nonresorbable Hydroxyapatite Granules as Bone Graft Substitutes in Rabbit Cortical Defects. Clinical Implant Dentistry and Related Research, 2003, 5, 95-102.                                                                                  | 1.6 | 33        |

| #   | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | In vitro study of monocyte viability during the initial adhesion to albumin- and fibrinogen-coated surfaces. Biomaterials, 2001, 22, 827-832.                                                                                                                                | 5.7 | 32        |
| 110 | Monocyte viability on titanium and copper coated titanium. Biomaterials, 2005, 26, 5942-5950.                                                                                                                                                                                | 5.7 | 32        |
| 111 | Osseointegration of fiber-reinforced composite implants: Histological and ultrastructural observations. Dental Materials, 2014, 30, e384-e395.                                                                                                                               | 1.6 | 32        |
| 112 | Bacteria-material surface interactions: methodological development for the assessment of implant surface induced antibacterial effects. , 2015, 103, 179-187.                                                                                                                |     | 32        |
| 113 | The Orientation of Nanoscale Apatite Platelets in Relation to Osteoblastic–Osteocyte Lacunae on<br>Trabecular Bone Surface. Calcified Tissue International, 2016, 98, 193-205.                                                                                               | 1.5 | 32        |
| 114 | Bone and soft tissue outcomes, risk factors, and complications of implantâ€supported prostheses:<br>5â€Years RCT with different abutment types and loading protocols. Clinical Implant Dentistry and<br>Related Research, 2018, 20, 313-321.                                 | 1.6 | 32        |
| 115 | Implant Survival and Marginal Bone Loss at Turned and Oxidized Implants in Periodontitisâ€Susceptible<br>Smokers and Neverâ€Smokers: A Retrospective, Clinical, Radiographic Caseâ€Control Study. Journal of<br>Periodontology, 2013, 84, 1775-1782.                         | 1.7 | 31        |
| 116 | Bone Response to Surface-Modified Titanium Implants: Studies on the Early Tissue Response to Implants with Different Surface Characteristics. International Journal of Biomaterials, 2013, 2013, 1-10.                                                                       | 1.1 | 31        |
| 117 | Role of nanostructured gold surfaces on monocyte activation and Staphylococcus epidermidis biofilm formation. International Journal of Nanomedicine, 2014, 9, 775.                                                                                                           | 3.3 | 31        |
| 118 | Biofilm properties in relation to treatment outcome in patients with first-time periprosthetic hip or knee joint infection. Journal of Orthopaedic Translation, 2021, 30, 31-40.                                                                                             | 1.9 | 31        |
| 119 | Inflammatory cells and mediators in the silicone chamber model for nerve regenerationâ~†. Biomaterials, 1993, 14, 1180-1185.                                                                                                                                                 | 5.7 | 29        |
| 120 | Effects of Irradiation on the Biomechanics of Osseointegration: an Experimental in Vivo Study in Rats.<br>Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 1997, 31, 281-293.                                                                    | 0.6 | 29        |
| 121 | The effects of a systemic single dose of zoledronic acid on post-implantation bone remodelling and inflammation in an ovariectomised rat model. Biomaterials, 2013, 34, 1546-1561.                                                                                           | 5.7 | 29        |
| 122 | Effect of load on the bone around bone-anchored amputation prostheses. Journal of Orthopaedic Research, 2017, 35, 1113-1122.                                                                                                                                                 | 1.2 | 29        |
| 123 | Method for immunolocalization of extracellular proteins in association with the implant—soft tissue interface. Biomaterials, 1994, 15, 17-24.                                                                                                                                | 5.7 | 28        |
| 124 | Human Embryonic Stem Cell-Derived Mesodermal Progenitors Display Substantially Increased Tissue<br>Formation Compared to Human Mesenchymal Stem Cells Under Dynamic Culture Conditions in a<br>Packed Bed/Column Bioreactor. Tissue Engineering - Part A, 2013, 19, 175-187. | 1.6 | 28        |
| 125 | Molecular and structural patterns of bone regeneration in surgically created defects containing bone substitutes. Biomaterials, 2014, 35, 3229-3242.                                                                                                                         | 5.7 | 28        |
| 126 | Inflammatory cell recruitment, distribution, and chemiluminescence response at IgG precoated- and thiol functionalized gold surfaces. , 1999, 47, 251-259.                                                                                                                   |     | 27        |

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Hollow implants in soft tissues allowing quantitative studies of cells and fluid at the implant interface. Biomaterials, 1988, 9, 86-90.                                                                                             | 5.7 | 26        |
| 128 | Tissue response to hafnium. Journal of Materials Science: Materials in Medicine, 2001, 12, 603-611.                                                                                                                                  | 1.7 | 26        |
| 129 | Bone response to free formâ€fabricated hydroxyapatite and zirconia scaffolds: a histological study in the human maxilla. Clinical Oral Implants Research, 2009, 20, 379-385.                                                         | 1.9 | 26        |
| 130 | Inflammatory cell response to ultra-thin amorphous and crystalline hydroxyapatite surfaces. Journal of Materials Science: Materials in Medicine, 2017, 28, 9.                                                                        | 1.7 | 26        |
| 131 | Nanoporous TiO2 Thin Film on Titanium Oral Implants for Enhanced Human Soft Tissue Adhesion: A<br>Light and Electron Microscopy Study. Clinical Implant Dentistry and Related Research, 2011, 13, 184-196.                           | 1.6 | 25        |
| 132 | Enamel matrix derivative for periodontal tissue regeneration in treatment of intrabony defects: a<br>Cochrane systematic review. Journal of Dental Education, 2004, 68, 834-44.                                                      | 0.7 | 25        |
| 133 | Long-term bone response to titanium implants coated with thin radiofrequent magnetron-sputtered hydroxyapatite in rabbits. International Journal of Oral and Maxillofacial Implants, 2004, 19, 498-509.                              | 0.6 | 25        |
| 134 | Direct communication between osteocytes and acid-etched titanium implants with a sub-micron topography. Journal of Materials Science: Materials in Medicine, 2016, 27, 167.                                                          | 1.7 | 24        |
| 135 | Monocyte activation on titanium-sputtered polystyrene surfaces in vitro: the effect of culture conditions on interleukin-1 release. Biomaterials, 1996, 17, 851-858.                                                                 | 5.7 | 23        |
| 136 | Bone Response to Freeâ€Form Fabricated Hydroxyapatite and Zirconia Scaffolds: A Transmission<br>Electron Microscopy Study in the Human Maxilla. Clinical Implant Dentistry and Related Research,<br>2012, 14, 461-469.               | 1.6 | 23        |
| 137 | Distribution of cells in soft tissue and fluid space around hollow and solid implants in the rat.<br>Journal of Materials Science: Materials in Medicine, 1994, 5, 269-278.                                                          | 1.7 | 22        |
| 138 | In vivo/ex vivo cellular interactions with titanium and copper. Journal of Materials Science: Materials in Medicine, 2001, 12, 939-944.                                                                                              | 1.7 | 22        |
| 139 | <i>In vivo</i> evaluation of noble metal coatings. Journal of Biomedical Materials Research - Part B<br>Applied Biomaterials, 2010, 92B, 86-94.                                                                                      | 1.6 | 22        |
| 140 | Ultrastructural evaluation of shrinkage artefacts induced by fixatives and embedding resins on<br>osteocyte processes and pericellular space dimensions. Journal of Biomedical Materials Research -<br>Part A, 2015, 103, 1565-1576. | 2.1 | 22        |
| 141 | Leukotriene B4, interleukin 1 and leucocyte accumulation in titanium and PTFE chambers after implantation in the rat abdominal wall. Biomaterials, 1991, 12, 827-830.                                                                | 5.7 | 21        |
| 142 | A novel soft tissue model for biomaterial-associated infection and inflammation – Bacteriological, morphological and molecular observations. Biomaterials, 2015, 41, 106-121.                                                        | 5.7 | 21        |
| 143 | Tissue response to titanium implants in experimental antigen-induced arthritis. Biomaterials, 1993, 14, 413-422.                                                                                                                     | 5.7 | 20        |
| 144 | Evaluation of a near-senescent human dermal fibroblast cell line and effect of amelogenin. British<br>Journal of Dermatology, 2009, 160, 1163-1171.                                                                                  | 1.4 | 20        |

| #   | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | The effects of controlled nanotopography, machined topography and their combination on molecular activities, bone formation and biomechanical stability during osseointegration. Acta Biomaterialia, 2021, 136, 279-290.                                                       | 4.1 | 20        |
| 146 | Acute Inflammatory Response to Laserâ€Induced Micro―and Nanoâ€Sized Titanium Surface Features.<br>Clinical Implant Dentistry and Related Research, 2013, 15, 96-104.                                                                                                           | 1.6 | 19        |
| 147 | Clinical, radiological, and gene expression analyses in smokers and nonâ€smokers, Part 2: RCT on the<br>late healing phase of osseointegration. Clinical Implant Dentistry and Related Research, 2017, 19,<br>901-915.                                                         | 1.6 | 19        |
| 148 | Soft Tissue Infection Around a Skin Penetrating Osseointegrated Implant: A Case Report. Scandinavian<br>Journal of Plastic and Reconstructive Surgery, 1987, 21, 225-228.                                                                                                      | 0.3 | 18        |
| 149 | Bone ingrowth in zirconia and hydroxyapatite scaffolds with identical macroporosity. Journal of<br>Materials Science: Materials in Medicine, 2008, 19, 2983-2992.                                                                                                              | 1.7 | 18        |
| 150 | The Influence of Bone Type on the Gene Expression in Normal Bone and at the Boneâ€Implant Interface:<br>Experiments in Animal Model. Clinical Implant Dentistry and Related Research, 2011, 13, 146-156.                                                                       | 1.6 | 18        |
| 151 | Gene Expression of Inflammation and Bone Healing in Periâ€Implant Crevicular Fluid after Placement and<br>Loading of Dental Implants. A Kinetic Clinical Pilot Study Using Quantitative Realâ€Time PCR. Clinical<br>Implant Dentistry and Related Research, 2012, 14, 723-736. | 1.6 | 18        |
| 152 | Gene expression in periâ€implant crevicular fluid of smokers and nonsmokers. 1. The early phase of osseointegration. Clinical Implant Dentistry and Related Research, 2017, 19, 681-693.                                                                                       | 1.6 | 18        |
| 153 | Commercially Available Dental Implants: Review of Their Surface Characteristics. Journal of<br>Biomaterials and Tissue Engineering, 2012, 2, 112-124.                                                                                                                          | 0.0 | 18        |
| 154 | Joint fluid leukocyte activation by preformed immune complexes. Inflammation, 1986, 10, 243-256.                                                                                                                                                                               | 1.7 | 17        |
| 155 | Analysis of rat plasma proteins desorbed from gold and methyl- and hydroxyl-terminated alkane thiols<br>on gold surfaces. Journal of Materials Science: Materials in Medicine, 2000, 11, 191-199.                                                                              | 1.7 | 17        |
| 156 | Maintaining and re-establishing health around osseointegrated oral implants: a Cochrane systematic review comparing the efficacy of various treatments. Periodontology 2000, 2003, 33, 204-212.                                                                                | 6.3 | 17        |
| 157 | Early inflammatory response in soft tissues induced by thin calcium phosphates. Journal of Biomedical<br>Materials Research - Part A, 2013, 101A, 2712-2717.                                                                                                                   | 2.1 | 17        |
| 158 | Immunomodulatory effects exerted by extracellular vesicles from Staphylococcus epidermidis and Staphylococcus aureus isolated from bone-anchored prostheses. Biomaterials, 2021, 278, 121158.                                                                                  | 5.7 | 17        |
| 159 | Cast titanium as implant material. Journal of Materials Science: Materials in Medicine, 1995, 6, 435-444.                                                                                                                                                                      | 1.7 | 16        |
| 160 | Stimulation of nerve regeneration by macrophages in granulation tissue. Restorative Neurology and Neuroscience, 1996, 9, 141-149.                                                                                                                                              | 0.4 | 16        |
| 161 | The Titanium-Bone Interface In Vivo. Engineering Materials, 2001, , 587-648.                                                                                                                                                                                                   | 0.3 | 16        |
| 162 | Bone response to physicalâ€vapourâ€deposited titanium dioxide coatings on titanium implants. Clinical<br>Oral Implants Research, 2013, 24, 1009-1017.                                                                                                                          | 1.9 | 16        |

| #   | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Highly packed and aligned fluoride substituted hydroxyapatite via a surfactantâ€free process. Journal of<br>Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 75-81.                                                                | 1.6 | 15        |
| 164 | The clinical outcome and microbiological profile of bone-anchored hearing systems (BAHS) with<br>different abutment topographies: a prospective pilot study. European Archives of<br>Oto-Rhino-Laryngology, 2018, 275, 1395-1408.                          | 0.8 | 15        |
| 165 | Persistent Irritation of the Soft Tissue Around an Osseointegrated Titanium Implant:Case Report.<br>Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 1994, 28, 225-230.                                                        | 0.6 | 14        |
| 166 | Biochemical and morphological studeis on osseointegration in immunological arthritis in rabbits.<br>Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 1997, 31, 185-195.                                                        | 0.6 | 14        |
| 167 | Hydroxyapatite Granule/Carrier Composites Promote New Bone Formation in Cortical Defects.<br>Clinical Implant Dentistry and Related Research, 2000, 2, 50-59.                                                                                              | 1.6 | 14        |
| 168 | Amelogenin is phagocytized and induces changes in integrin configuration, gene expression and<br>proliferation of cultured normal human dermal fibroblasts. Journal of Materials Science: Materials<br>in Medicine, 2010, 21, 947-954.                     | 1.7 | 14        |
| 169 | Biocompatibility and resorption of a radiopaque premixed calcium phosphate cement. Journal of<br>Biomedical Materials Research - Part A, 2012, 100A, 1269-1278.                                                                                            | 2.1 | 14        |
| 170 | Retrieved bone-anchored percutaneous amputation prosthesis showing maintained osseointegration<br>after 11 years—a case report. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 85,<br>442-445.                                          | 1.2 | 14        |
| 171 | Immediately Loaded Implants with or without Abutments Supporting Fixed Partial Dentures: 1‥ear<br>Results from a Prospective, Randomized, Clinical Trial. Clinical Implant Dentistry and Related<br>Research, 2014, 16, 487-500.                           | 1.6 | 14        |
| 172 | Implantâ€associated gene expression in the jaw bone of smokers and nonsmokers: A human study using quantitative <scp>qPCR</scp> . Clinical Oral Implants Research, 2018, 29, 937-953.                                                                      | 1.9 | 14        |
| 173 | Gene Expression Profiling of Peri-Implant Healing of PLGA-Li+ Implants Suggests an Activated Wnt<br>Signaling Pathway In Vivo. PLoS ONE, 2014, 9, e102597.                                                                                                 | 1.1 | 14        |
| 174 | Fluorapatite-coated implants in experimental arthritis: the response of rabbit trabecular bone.<br>Journal of Materials Science: Materials in Medicine, 1994, 5, 59-66.                                                                                    | 1.7 | 13        |
| 175 | CO-CULTURE OF HUMAN MONOCYTES AND THYROCYTES IN BICAMERAL CHAMBER: MONOCYTE-DERIVED IL-1α<br>IMPAIRS THE THYROID EPITHELIAL BARRIER. Cytokine, 2000, 12, 32-40.                                                                                            | 1.4 | 13        |
| 176 | Apoptosis and cytokine release in human monocytes cultured on polystyrene and fibrinogen-coated polystyrene surfaces. Biomaterials, 2002, 23, 1639-1648.                                                                                                   | 5.7 | 13        |
| 177 | A novel method for producing electron transparent films of interfaces between cells and biomaterials. Journal of Materials Science: Materials in Medicine, 2008, 19, 467-470.                                                                              | 1.7 | 12        |
| 178 | The effects of PPAR-Î <sup>3</sup> inhibition on gene expression and the progression of induced osteogenic differentiation of human mesenchymal stem cells. Connective Tissue Research, 2014, 55, 262-274.                                                 | 1.1 | 12        |
| 179 | Bone Response and Soft Tissue Changes Around Implants With/Without Abutments Supporting Fixed<br>Partial Dentures: Results From a 3‥ear, Prospective, Randomized, Controlled Study. Clinical Implant<br>Dentistry and Related Research, 2016, 18, 309-322. | 1.6 | 12        |
| 180 | Extracellular matrix composition during bone regeneration in the human dental alveolar socket.<br>Bone, 2019, 127, 244-249.                                                                                                                                | 1.4 | 12        |

PETER THOMSEN

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Ex vivo analysis of leukocyte hydrogen peroxide production using a bi-plate model in mice. Journal of<br>Cellular Physiology, 1996, 166, 138-143.                                                     | 2.0 | 11        |
| 182 | Secretion of IL-1 and H2O2 by human mononuclear cells in vitro. Biomaterials, 2000, 21, 1047-1055.                                                                                                    | 5.7 | 11        |
| 183 | Locally enhanced early bone formation of zoledronic acid incorporated into a bone cement plug <i>in vivo</i> . Journal of Pharmacy and Pharmacology, 2012, 65, 201-212.                               | 1.2 | 11        |
| 184 | Bone without borders – Monetite-based calcium phosphate guides bone formation beyond the skeletal envelope. Bioactive Materials, 2023, 19, 103-114.                                                   | 8.6 | 11        |
| 185 | Healing of titanium implants in onlay bone grafts: an experimental rabbit model. Journal of Materials<br>Science: Materials in Medicine, 2000, 11, 83-89.                                             | 1.7 | 10        |
| 186 | Amelogenins modulate cytokine expression in LPS-challenged cultured human macrophages. Cytokine, 2012, 58, 274-279.                                                                                   | 1.4 | 10        |
| 187 | Staphylococcal biofilm gene expression on biomaterials — A methodological study. Journal of<br>Biomedical Materials Research - Part A, 2017, 105, 3400-3412.                                          | 2.1 | 10        |
| 188 | Soft-Tissue-Anchored Transcutaneous Port for Long-Term Percutaneous Transhepatic Biliary<br>Drainage. CardioVascular and Interventional Radiology, 2005, 28, 53-59.                                   | 0.9 | 9         |
| 189 | Genomics of Staphylococcus aureus and Staphylococcus epidermidis from Periprosthetic Joint<br>Infections and Correlation to Clinical Outcome. Microbiology Spectrum, 2022, 10, .                      | 1.2 | 9         |
| 190 | Proliferative Synovitis in Rabbit Knee Joints Induced by Antigen and Preformed Immune Complexes.<br>Scandinavian Journal of Rheumatology, 1985, 14, 239-251.                                          | 0.6 | 8         |
| 191 | Influence of indomethacin on the regeneration of cortical bone within titanium implants in rabbits.<br>Biomaterials, 1993, 14, 156-158.                                                               | 5.7 | 8         |
| 192 | Resolving the CaP-bone interface. Biomatter, 2012, 2, 15-23.                                                                                                                                          | 2.6 | 8         |
| 193 | Jaw Bone Samples From Bisphosphonateâ€Treated Patients: A Pilot Cohort Study. Clinical Implant<br>Dentistry and Related Research, 2015, 17, e679-91.                                                  | 1.6 | 8         |
| 194 | Inhibitory effect of honey bee venom on immune complex mediated leukocyte migration into rabbit<br>knee-joints. Agents and Actions, 1984, 14, 662-666.                                                | 0.7 | 7         |
| 195 | Ellipsometric studiesin vitro on kinetics of rat complement activation. , 1999, 44, 222-225.                                                                                                          |     | 7         |
| 196 | Ex vivo PMA-induced respiratory burst and TNF-α secretion elicited from inflammatory cells on machined and porous blood plasma clot-coated titanium. Biomaterials, 2002, 23, 2803-2815.               | 5.7 | 7         |
| 197 | In vitro and in vivo evaluation of an injectable premixed calcium phosphate cement; cell viability and immunological response from rat. International Journal of Nano and Biomaterials, 2011, 3, 203. | 0.1 | 7         |
| 198 | Titanium in Soft Tissues. Engineering Materials, 2001, , 513-560.                                                                                                                                     | 0.3 | 7         |

| #   | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Titanium implants in rabbit knee joints. Acta Orthopaedica, 1987, 58, 265-269.                                                                                                                                                                                    | 1.4 | 6         |
| 200 | Studies of the healing of bone grafts, and the incorporation of titanium implants in grafted bone: an experimental animal model. Journal of Materials Science: Materials in Medicine, 1998, 9, 535-541.                                                           | 1.7 | 6         |
| 201 | H2O2 production by cells on titanium and polystyrene surfaces using an in vivo model of exudate and surface related cell function. Journal of Materials Science: Materials in Medicine, 2002, 13, 735-743.                                                        | 1.7 | 6         |
| 202 | Siteâ€specific gene expression analysis of implantâ€near cells in a soft tissue infection model —<br>Application of laser microdissection to study biomaterialâ€associated infection. Journal of Biomedical<br>Materials Research - Part A, 2017, 105, 2210-2217. | 2.1 | 6         |
| 203 | Interactions between monocytes, mesenchymal stem cells, and implants evaluated using flow cytometry and gene expression. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1728-1741.                                                            | 1.3 | 6         |
| 204 | Sodium Salicylate Influences the Pseudomonas aeruginosa Biofilm Structure and Susceptibility<br>Towards Silver. International Journal of Molecular Sciences, 2021, 22, 1060.                                                                                      | 1.8 | 6         |
| 205 | Acute Synovitis Induced by Preformed Immune Complexes. Scandinavian Journal of Rheumatology, 1986, 15, 134-142.                                                                                                                                                   | 0.6 | 5         |
| 206 | Activation and migration of leukocytes and vascular leakage induced by serum-opsonized zymosan particles in hamster cheek pouch. Inflammation, 1989, 13, 91-102.                                                                                                  | 1.7 | 5         |
| 207 | Leucocyte accumulation and leukotriene B4 release in response to polyglactin 910 and expanded polytetrafluoroethylene in hollow chambers in the rat. Biomaterials, 1995, 16, 107-111.                                                                             | 5.7 | 5         |
| 208 | On the formation of fibrous capsule and fluid space around machined and porous blood plasma clot coated titanium. Journal of Materials Science: Materials in Medicine, 2001, 12, 1019-1024.                                                                       | 1.7 | 5         |
| 209 | Extracellular Vesicles Influence the Growth and Adhesion of Staphylococcus epidermidis Under<br>Antimicrobial Selective Pressure. Frontiers in Microbiology, 2020, 11, 1132.                                                                                      | 1.5 | 5         |
| 210 | Human Progenitor Cells for Bone Engineering Applications. Current Molecular Medicine, 2013, 13, 723-734.                                                                                                                                                          | 0.6 | 5         |
| 211 | E-PTFE in rabbit knee-joints. Journal of Materials Science: Materials in Medicine, 1994, 5, 473-480.                                                                                                                                                              | 1.7 | 4         |
| 212 | Virtual Ligand-Based Screening Reveals Purmorphamine Analogs with the Capacity to Induce the<br>Osteogenic Differentiation of Human Mesenchymal Stem Cells. Cells Tissues Organs, 2013, 197, 89-102.                                                              | 1.3 | 4         |
| 213 | Electropolished Titanium Implants with a Mirror-Like Surface Support Osseointegration and Bone<br>Remodelling. Advances in Materials Science and Engineering, 2016, 2016, 1-10.                                                                                   | 1.0 | 4         |
| 214 | Molecular Response to Nanopatterned Implants in the Human Jaw Bone. ACS Biomaterials Science and<br>Engineering, 2021, 7, 5878-5889.                                                                                                                              | 2.6 | 4         |
| 215 | Amelogenins promote an alternatively activated macrophage phenotype in vitro. International Journal of Nano and Biomaterials, 2011, 3, 282.                                                                                                                       | 0.1 | 3         |
| 216 | Ultrastructural characterisation of the hydroxyapatite-coated pedicle screw and human bone interface. International Journal of Nano and Biomaterials, 2012, 4, 1.                                                                                                 | 0.1 | 3         |

| #   | Article                                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Clinical Evaluation of a Novel Laser-Ablated Titanium Implant System for Bone Anchored Hearing<br>Systems in a Pediatric Population and the Relationship of Resonance Frequency Analysis With Implant<br>Survival. Otology and Neurotology, 2021, Publish Ahead of Print, .                              | 0.7 | 3         |
| 218 | Implant exudate leucocyte response to anti-inflammatory drug treatment. Journal of Materials<br>Science: Materials in Medicine, 1993, 4, 186-191.                                                                                                                                                        | 1.7 | 2         |
| 219 | Integration between a percutaneous implant and the porcine small bowel. Journal of Biomedical<br>Materials Research - Part B Applied Biomaterials, 2011, 98B, 101-109.                                                                                                                                   | 1.6 | 2         |
| 220 | Does Smoking Impair Bone Regeneration in the Dental Alveolar Socket?. Calcified Tissue International, 2019, 105, 619-629.                                                                                                                                                                                | 1.5 | 2         |
| 221 | Monocytes and pyrophosphate promote mesenchymal stem cell viability and early osteogenic differentiation. Journal of Materials Science: Materials in Medicine, 2022, 33, 11.                                                                                                                             | 1.7 | 2         |
| 222 | Three-dimensional modeling of removal torque and fracture progression around implants. Journal of<br>Materials Science: Materials in Medicine, 2018, 29, 104.                                                                                                                                            | 1.7 | 1         |
| 223 | Multimodal Analysis of the Tissue Response to a Bone-Anchored Hearing Implant: Presentation of a<br>Two-Year Case Report of a Patient With Recurrent Pain, Inflammation, and Infection, Including a<br>Systematic Literature Review. Frontiers in Cellular and Infection Microbiology, 2021, 11, 640899. | 1.8 | 1         |
| 224 | Biomaterials for Cranio-Maxillofacial Bone Engineering. , 2019, , 7-25.                                                                                                                                                                                                                                  |     | 1         |
| 225 | Achieving stomal continence with an ileal pouch and a percutaneous implant. Journal of Materials<br>Science: Materials in Medicine, 2022, 33, 7.                                                                                                                                                         | 1.7 | 1         |
| 226 | Corrigendum to "Electropolished Titanium Implants with a Mirror-Like Surface Support<br>Osseointegration and Bone Remodelling― Advances in Materials Science and Engineering, 2017, 2017,<br>1-2.                                                                                                        | 1.0 | 0         |
| 227 | Cellular and molecular reactions to dental implants. , 2020, , 183-205.                                                                                                                                                                                                                                  |     | 0         |
| 228 | Role of Implant Surface Properties on the Clinical Outcome of Osseointegrated Oral Implant Therapy. ,<br>2003, , .                                                                                                                                                                                       |     | 0         |