Shuanglong Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9053226/publications.pdf

Version: 2024-02-01

567281 610901 33 634 15 24 citations g-index h-index papers 33 33 33 861 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes. Nanoscale, 2017, 9, 6020-6025.	5.6	77
2	Catalyst-Free, Selective Growth of ZnO Nanowires on SiO ₂ by Chemical Vapor Deposition for Transfer-Free Fabrication of UV Photodetectors. ACS Applied Materials & Samp; Interfaces, 2015, 7, 20264-20271.	8.0	69
3	Enhancement of the Photoresponse of Monolayer MoS ₂ Photodetectors Induced by a Nanoparticle Grating. ACS Applied Materials & Samp; Interfaces, 2020, 12, 8429-8436.	8.0	57
4	Facile Synthesis of LaCoO ₃ with a High Oxygen Vacancy Concentration by the Plasma Etching Technique for High-Performance Oxygen Ion Intercalation Pseudocapacitors. ACS Applied Energy Materials, 2020, 3, 300-308.	5.1	54
5	Ultrafast growth of large-area monolayer MoS ₂ film via gold foil assistant CVD for a highly sensitive photodetector. Nanotechnology, 2017, 28, 275203.	2.6	47
6	MXene-Enhanced Deep Ultraviolet Photovoltaic Performances of Crossed Zn ₂ GeO ₄ Nanowires. Journal of Physical Chemistry C, 2020, 124, 4764-4771.	3.1	32
7	Light Trapping in Conformal Graphene/Silicon Nanoholes for High-Performance Photodetectors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 30421-30429.	8.0	25
8	Synthesis of ternary oxide Zn ₂ GeO ₄ nanowire networks and their deep ultraviolet detection properties. RSC Advances, 2019, 9, 1394-1402.	3.6	24
9	Direct growth of vertical structure MoS2 nanosheets array film via CVD method for photodetection. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 117, 113592.	2.7	18
10	Interface Engineering of a Silicon/Graphene Heterojunction Photodetector via a Diamond-Like Carbon Interlayer. ACS Applied Materials & Samp; Interfaces, 2021, 13, 4692-4702.	8.0	18
11	Porous structure diamond films with super-hydrophilic performance. Diamond and Related Materials, 2015, 56, 36-41.	3.9	17
12	Electrochemical Epitaxial Grown PbS Nanorods Array on Graphene Film for Highâ€Performance Photodetector. Advanced Materials Interfaces, 2021, 8, .	3.7	17
13	Vertical Few-Layer WSe ₂ Nanosheets for NO ₂ Sensing. ACS Applied Nano Materials, 2021, 4, 12043-12050.	5.0	16
14	Anomalous temperature coefficient of resistance in graphene nanowalls/polymer films and applications in infrared photodetectors. Nanophotonics, 2018, 7, 883-892.	6.0	15
15	Nanodiamond enhanced ZnO nanowire based UV photodetector with a high photoresponse performance. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 104, 314-319.	2.7	15
16	Facile synthesis of β–Ga ₂ O ₃ nanowires network for solar-blind ultraviolet photodetector. Journal Physics D: Applied Physics, 2021, 54, 175106.	2.8	15
17	Hierarchical lead grid for highly stable oxygen evolution in acidic water at high temperature. Journal of Power Sources, 2021, 493, 229635.	7.8	15
18	Catalyst-free growth of a Zn2GeO4 nanowire network for high-performance transfer-free solar-blind deep UV detection. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 107, 1-4.	2.7	13

#	Article	IF	CITATIONS
19	A High Performance Solar-Blind Detector Based on Mixed–Phase Zn0.45Mg0.55O Alloy Nanowires Network. Electronic Materials Letters, 2019, 15, 303-313.	2.2	12
20	Self-catalyst \hat{l}^2 -Ga ₂ O ₃ semiconductor lateral nanowire networks synthesis on the insulating substrate for deep ultraviolet photodetectors. RSC Advances, 2021, 11, 28326-28331.	3.6	11
21	Ultrafast UV response detectors based on multi-channel ZnO nanowire networks. RSC Advances, 2015, 5, 105288-105291.	3.6	10
22	Hybrid graphene heterojunction photodetector with high infrared responsivity through barrier tailoring. Nanotechnology, 2019, 30, 195202.	2.6	8
23	Hybrid structure of PbS QDs and vertically-few-layer MoS ₂ nanosheets array for broadband photodetector. Nanotechnology, 2021, 32, 145602.	2.6	8
24	Electrochemical epitaxial (200) PbSe submicron-plates on single-layer graphene for an ultrafast infrared response. Journal of Materials Chemistry C, 2021, 9, 6536-6543.	5 . 5	8
25	Microwave plasma assisted reduction synthesis of hexagonal cobalt nanosheets with enhanced electromagnetic performances. Nanotechnology, 2019, 30, 495601.	2.6	7
26	Dual-Color Photodetection Based on Speed-Differentiated Photoresponse with High Photogain. ACS Photonics, 2021, 8, 1027-1033.	6.6	7
27	High zero-bias responsivity induced by photogating effect in asymmetric device structure. Optical Materials, 2022, 124, 112013.	3 . 6	5
28	TiO _{2-x} films for bolometer applications: recent progress and perspectives. Materials Research Express, 0, , .	1.6	5
29	Improved hydrogen evolution at high temperature using an electro-thermal method. Journal Physics D: Applied Physics, 2020, 53, 185302.	2.8	3
30	Sulfideâ€Inhibiting Growth of Lead Sulfide Rods Array Film from Micron to Nano for NIR Photodetector. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	1.8	3
31	Towards high-performance transistors and photodetectors with monolayer graphene through modified transfer and lithography process. Materials Express, 2017, 7, 230-236.	0.5	2
32	Dynamically Induced Largeâ€Scale, Selective, and Vertical Structure Growth of MoS ₂ Nanosheets. Advanced Engineering Materials, 2022, 24, 2101105.	3 . 5	1
33	High–efficiency photoreduction of CO2 in low vacuum. Physical Chemistry Chemical Physics, 0, , .	2.8	0