Yiguo Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9053129/publications.pdf

Version: 2024-02-01

		201674	243625
59	2,262	27	44
papers	citations	h-index	g-index
78	78	78	2018
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dysfunction of the energy sensor NFE2L1 triggers uncontrollable AMPK signaling and glucose metabolism reprogramming. Cell Death and Disease, 2022, 13,.	6.3	13
2	Activation of the membrane-bound Nrf1 transcription factor by USP19, a ubiquitin-specific protease C-terminally anchored in the endoplasmic reticulum. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119299.	4.1	9
3	The Role of MicroRNA in the Regulation of Tumor Epithelial–Mesenchymal Transition. Cells, 2022, 11, 1981.	4.1	14
4	Metformin leads to accumulation of reactive oxygen species by inhibiting the NFE2L1 expression in human hepatocellular carcinoma cells. Toxicology and Applied Pharmacology, 2021, 420, 115523.	2.8	11
5	TCF11 Has a Potent Tumor-Repressing Effect Than Its Prototypic Nrf1 \hat{l} ± by Definition of Both Similar Yet Different Regulatory Profiles, With a Striking Disparity From Nrf2. Frontiers in Oncology, 2021, 11, 707032.	2.8	10
6	Differential Yet Integral Contributions of Nrf1 and Nrf2 in the Human HepG2 Cells on Antioxidant Cytoprotective Response against Tert-Butylhydroquinone as a Pro-Oxidative Stressor. Antioxidants, 2021, 10, 1610.	5.1	14
7	Unification of Opposites between Two Antioxidant Transcription Factors Nrf1 and Nrf2 in Mediating Distinct Cellular Responses to the Endoplasmic Reticulum Stressor Tunicamycin. Antioxidants, 2020, 9, 4.	5.1	39
8	Glucose Starvation-Induced Rapid Death of Nrf1 < i> $\hat{l}\pm <$ i>-Deficient, but Not Nrf2-Deficient, Hepatoma Cells Results from Its Fatal Defects in the Redox Metabolism Reprogramming. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-20.	4.0	12
9	Synergism and Antagonism of Two Distinct, but Confused, Nrf1 Factors in Integral Regulation of the Nuclear-to-Mitochondrial Respiratory and Antioxidant Transcription Networks. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-33.	4.0	4
10	Commentary on Distinct, but Previously Confused, Nrf1 Transcription Factors and Their Functions in Redox Regulation. Developmental Cell, 2020, 53, 377-378.	7.0	4
11	Nrf1 Is Endowed with a Dominant Tumor-Repressing Effect onto the Wnt/ <i>\hat{l}^2</i> -Catenin-Dependent and Wnt/ <i<math>\hat{l}^2-Catenin-Independent Signaling Networks in the Human Liver Cancer. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-28.</i<math>	4.0	15
12	Distinct isoforms of Nrf1 diversely regulate different subsets of its cognate target genes. Scientific Reports, 2019, 9, 2960.	3.3	26
13	elF2 alpha phosphorylation alleviates UVA-induced HO-1 expression in mouse epidermal cells. Free Radical Research, 2018, 52, 1359-1370.	3.3	6
14	Nach Is a Novel Subgroup at an Early Evolutionary Stage of the CNC-bZIP Subfamily Transcription Factors from the Marine Bacteria to Humans. International Journal of Molecular Sciences, 2018, 19, 2927.	4.1	14
15	Oncogenic Activation of Nrf2, Though as a Master Antioxidant Transcription Factor, Liberated by Specific Knockout of the Full-Length Nrf1 \hat{l}_{\pm} that Acts as a Dominant Tumor Repressor. Cancers, 2018, 10, 520.	3.7	42
16	Nrf1 is paved as a new strategic avenue to prevent and treat cancer, neurodegenerative and other diseases. Toxicology and Applied Pharmacology, 2018, 360, 273-283.	2.8	46
17	Topovectorial mechanisms control the juxtamembrane proteolytic processing of Nrf1 to remove its N-terminal polypeptides during maturation of the CNC-bZIP factor. Toxicology and Applied Pharmacology, 2018, 360, 160-184.	2.8	21
18	Mechanisms controlling the multistage post-translational processing of endogenous Nrf1 \hat{i} ±/TCF11 proteins to yield distinct isoforms within the coupled positive and negative feedback circuits. Toxicology and Applied Pharmacology, 2018, 360, 212-235.	2.8	39

#	Article	IF	Citations
19	Novel flavaglineâ€like compounds with potent Fliâ€1 inhibitory activity suppress diverse types of leukemia. FEBS Journal, 2018, 285, 4631-4645.	4.7	22
20	Nrf1D Is the First Candidate Secretory Transcription Factor in the Blood Plasma, Its Precursor Existing as a Unique Redox-Sensitive Transmembrane CNC-bZIP Protein in Hemopoietic and Somatic Tissues. International Journal of Molecular Sciences, 2018, 19, 2940.	4.1	2
21	NF-E2-related factor 2 serves a key function in resistance to malignant transformation of BEAS-2B cells induced by coal tar pitch. Oncology Letters, 2018, 15, 5143-5148.	1.8	5
22	Adipocyte-specific deficiency of Nfe2l1 disrupts plasticity of white adipose tissues and metabolic homeostasis in mice. Biochemical and Biophysical Research Communications, 2018, 503, 264-270.	2.1	35
23	A Naturally-Occurring Dominant-Negative Inhibitor of Keap1 Competitively against Its Negative Regulation of Nrf2. International Journal of Molecular Sciences, 2018, 19, 2150.	4.1	8
24	Molecular and cellular basis for the unique functioning of Nrf1, an indispensable transcription factor for maintaining cell homoeostasis and organ integrity. Biochemical Journal, 2016, 473, 961-1000.	3.7	117
25	TALENs-directed knockout of the full-length transcription factor Nrf1α that represses malignant behaviour of human hepatocellular carcinoma (HepG2) cells. Scientific Reports, 2016, 6, 23775.	3.3	44
26	Abstract 4556: Activation of sonic hedgehog signaling is essential for non-alcoholic steatohepatitis induced by liver-specific disruption of Nrf1., 2016,,.		0
27	The selective post-translational processing of transcription factor Nrf1 yields distinct isoforms that dictate its ability to differentially regulate gene expression. Scientific Reports, 2015, 5, 12983.	3.3	48
28	Transcription factor Nrf1 is negatively regulated by its <i>O</i> â€GlcNAcylation status. FEBS Letters, 2015, 589, 2347-2358.	2.8	26
29	Nrf1 and Nrf2 Transcription Factors Regulate Androgen Receptor Transactivation in Prostate Cancer Cells. PLoS ONE, 2014, 9, e87204.	2.5	59
30	Transcription Factor Nrf1 Is Topologically Repartitioned across Membranes to Enable Target Gene Transactivation through Its Acidic Glucose-Responsive Domains. PLoS ONE, 2014, 9, e93458.	2.5	49
31	The C-Terminal Domain of Nrf1 Negatively Regulates the Full-Length CNC-bZIP Factor and Its Shorter Isoform LCR-F1/Nrf1 \hat{l}^2 ; Both Are Also Inhibited by the Small Dominant-Negative Nrf1 \hat{l}^3 / \hat{l}^7 Isoforms that Down-Regulate ARE-Battery Gene Expression. PLoS ONE, 2014, 9, e109159.	2.5	21
32	A microwell pattern for C17.2 cell aggregate formation with concave cylindrical surface induced cell peeling. Biomaterials, 2014, 35, 9423-9437.	11.4	10
33	The membrane-topogenic vectorial behaviour of Nrf1 controls its post-translational modification and transactivation activity. Scientific Reports, 2013, 3, 2006.	3.3	39
34	Mechanisms Underlying Chemopreventive Effects of Flavonoids via Multiple Signaling Nodes within Nrf2-ARE and AhR-XRE Gene Regulatory Networks. Current Chemical Biology, 2013, 7, 151-176.	0.5	29
35	UVA, UVB and UVC Induce Differential Response Signaling Pathways Converged on the eIF2α Phosphorylation. Photochemistry and Photobiology, 2011, 87, 1092-1104.	2.5	33
36	An optimal tumor marker group-coupled artificial neural network for diagnosis of lung cancer. Expert Systems With Applications, 2011, 38, 11329-11334.	7.6	27

#	Article	IF	CITATIONS
37	Identification of topological determinants in the N-terminal domain of transcription factor Nrf1 that control its orientation in the endoplasmic reticulum membrane. Biochemical Journal, 2010, 430, 497-510.	3.7	52
38	The Nrf3 Transcription Factor Is a Membrane-bound Glycoprotein Targeted to the Endoplasmic Reticulum through Its N-terminal Homology Box 1 Sequence. Journal of Biological Chemistry, 2009, 284, 3195-3210.	3.4	65
39	The Nrf1 CNC/bZIP protein is a nuclear envelope-bound transcription factor that is activated by t-butyl hydroquinone but not by endoplasmic reticulum stressors. Biochemical Journal, 2009, 418, 293-310.	3.7	69
40	Involvement of ERKs, RSK2 and PKR in UVA-induced signal transduction toward phosphorylation of eIF2α (Ser51). Carcinogenesis, 2007, 28, 1543-1551.	2.8	23
41	The NHB1 (N-terminal homology box 1) sequence in transcription factor Nrf1 is required to anchor it to the endoplasmic reticulum and also to enable its asparagine-glycosylation. Biochemical Journal, 2007, 408, 161-172.	3.7	94
42	Oxidative stress and the Nrf1 and Nrf2 transcription factors. Toxicology Letters, 2007, 172, S10.	0.8	0
43	Negative regulation of the Nrf1 transcription factor by its N-terminal domain is independent of Keap1: Nrf1, but not Nrf2, is targeted to the endoplasmic reticulum. Biochemical Journal, 2006, 399, 373-385.	3.7	112
44	Involvement of ERKs and mitogen- and stress-activated protein kinase in UVC-induced phosphorylation of ATF2 in JB6 cells. Carcinogenesis, 2004, 25, 1847-1852.	2.8	17
45	The signal transduction networks required for phosphorylation of STAT1 at Ser727 in mouse epidermal JB6 cells in the UVB response and inhibitory mechanisms of tea polyphenols. Carcinogenesis, 2004, 26, 331-342.	2.8	39
46	Evidence of STAT1 phosphorylation modulated by MAPKs, MEK1 and MSK1. Carcinogenesis, 2004, 25, 1165-1175.	2.8	35
47	Arsenite-induced Phosphorylation of Histone H3 at Serine 10 Is Mediated by Akt1, Extracellular Signal-regulated Kinase 2, and p90 Ribosomal S6 Kinase 2 but Not Mitogen- and Stress-activated Protein Kinase 1. Journal of Biological Chemistry, 2003, 278, 10588-10593.	3.4	48
48	Ataxia Telangiectasia Mutated Proteins, MAPKs, and RSK2 Are Involved in the Phosphorylation of STAT3. Journal of Biological Chemistry, 2003, 278, 12650-12659.	3.4	47
49	NS-398 and Piroxicam Suppress UVB-induced Activator Protein 1 Activity by Mechanisms Independent of Cyclooxygenase-2. Journal of Biological Chemistry, 2003, 278, 2124-2130.	3.4	23
50	Requirement of ATM in UVA-induced Signaling and Apoptosis. Journal of Biological Chemistry, 2002, 277, 3124-3131.	3.4	79
51	Phosphorylation of 4E-BP1 Is Mediated by the p38/MSK1 Pathway in Response to UVB Irradiation. Journal of Biological Chemistry, 2002, 277, 8810-8816.	3.4	68
52	Involvement of c-jun NH2-terminal kinases in resveratrol-induced activation of p53 and apoptosis. Molecular Carcinogenesis, 2002, 33, 244-250.	2.7	91
53	Organ-specific distribution of AP-1 in AP-1 luciferase transgenic mice during the maturation process. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R376-R381.	1.8	10
54	MSK1 and JNKs Mediate Phosphorylation of STAT3 in UVA-irradiated Mouse Epidermal JB6 Cells. Journal of Biological Chemistry, 2001, 276, 42534-42542.	3.4	72

YIGUO ZHANG

#	Article	IF	CITATION
55	Signal Transduction Pathways Involved in Phosphorylation and Activation of p70S6K Following Exposure to UVA Irradiation. Journal of Biological Chemistry, 2001, 276, 20913-20923.	3.4	86
56	UVA Induces Ser381 Phosphorylation of p90RSK/MAPKAP-K1 via ERK and JNK Pathways. Journal of Biological Chemistry, 2001, 276, 14572-14580.	3.4	77
57	Involvement of the Acid Sphingomyelinase Pathway in UVA-induced Apoptosis. Journal of Biological Chemistry, 2001, 276, 11775-11782.	3.4	134
58	MAP Kinases Mediate UVB-induced Phosphorylation of Histone H3 at Serine 28. Journal of Biological Chemistry, 2001, 276, 12932-12937.	3.4	57
59	Induction of EGFR-Dependent and EGFR-Independent Signaling Pathways by Ultraviolet A Irradiation. DNA and Cell Biology, 2001, 20, 769-779.	1.9	25