
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/905298/publications.pdf Version: 2024-02-01

IIII FENI DAF ZIEDATH

#	Article	IF	CITATIONS
1	Post-translational Modifications: The Signals at the Intersection of Exercise, Glucose Uptake, and Insulin Sensitivity. Endocrine Reviews, 2022, 43, 654-677.	8.9	9
2	Glutamine Regulates Skeletal Muscle Immunometabolism in Type 2 Diabetes. Diabetes, 2022, 71, 624-636.	0.3	14
3	Integrated Liver and Plasma Proteomics in Obese Mice Reveals Complex Metabolic Regulation. Molecular and Cellular Proteomics, 2022, 21, 100207.	2.5	12
4	Exercise/Physical Activity in Individuals with Type 2 Diabetes: A Consensus Statement from the American College of Sports Medicine. Medicine and Science in Sports and Exercise, 2022, 54, 353-368.	0.2	209
5	Atlas of exercise metabolism reveals time-dependent signatures of metabolic homeostasis. Cell Metabolism, 2022, 34, 329-345.e8.	7.2	86
6	Comparative analysis of oral and intraperitoneal glucose tolerance tests in mice. Molecular Metabolism, 2022, 57, 101440.	3.0	25
7	Impaired phosphocreatine metabolism in white adipocytes promotes inflammation. Nature Metabolism, 2022, 4, 190-202.	5.1	21
8	Exerkines in health, resilience and disease. Nature Reviews Endocrinology, 2022, 18, 273-289.	4.3	268
9	The Comparative Methylome and Transcriptome After Change of Direction Compared to Straight Line Running Exercise in Human Skeletal Muscle. Frontiers in Physiology, 2021, 12, 619447.	1.3	19
10	Metabolic consequences of obesity and type 2 diabetes: Balancing genes and environment for personalized care. Cell, 2021, 184, 1530-1544.	13.5	113
11	Zeitgebers of skeletal muscle and implications for metabolic health. Journal of Physiology, 2021, , .	1.3	14
12	Mass-spectrometry-based proteomics reveals mitochondrial supercomplexome plasticity. Cell Reports, 2021, 35, 109180.	2.9	28
13	Quantitative phosphoproteomic analysis of IRS1 in skeletal muscle from men with normal glucose tolerance or type 2 diabetes: A case-control study. Metabolism: Clinical and Experimental, 2021, 118, 154726.	1.5	5
14	COVID-19 editorial: mechanistic links and therapeutic challenges for metabolic diseases one year into the COVID-19 pandemic. Metabolism: Clinical and Experimental, 2021, 119, 154769.	1.5	6
15	Branched-chain amino acid metabolism is regulated by ERRα in primary human myotubes and is further impaired by glucose loading in type 2 diabetes. Diabetologia, 2021, 64, 2077-2091.	2.9	20
16	Three weeks of interrupting sitting lowers fasting glucose and glycemic variability, but not glucose tolerance, in free-living women and men with obesity. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E203-E216.	1.8	13
17	Modified UCN2 peptide treatment improves skeletal muscle mass and function in mouse models of obesityâ€ i nduced insulin resistance. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 1232-1248.	2.9	11
18	Discovery of thymosin β4 as a human exerkine and growth factor. American Journal of Physiology - Cell Physiology, 2021, 321, C770-C778.	2.1	16

#	Article	IF	CITATIONS
19	Epigenetic rewiring of skeletal muscle enhancers after exercise training supports a role in whole-body function and human health. Molecular Metabolism, 2021, 53, 101290.	3.0	13
20	Endurance exercise training-responsive miR-19b-3p improves skeletal muscle glucose metabolism. Nature Communications, 2021, 12, 5948.	5.8	20
21	Disrupted circadian oscillations in type 2 diabetes are linked to altered rhythmic mitochondrial metabolism in skeletal muscle. Science Advances, 2021, 7, eabi9654.	4.7	44
22	The role of the molecular circadian clock in human energy homeostasis. Current Opinion in Lipidology, 2021, 32, 16-23.	1.2	4
23	Influence of obesity, weight loss, and free fatty acids on skeletal muscle clock gene expression. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E1-E10.	1.8	20
24	Comparative profiling of skeletal muscle models reveals heterogeneity of transcriptome and metabolism. American Journal of Physiology - Cell Physiology, 2020, 318, C615-C626.	2.1	91
25	Chrono-nutrition for the prevention and treatment of obesity and type 2 diabetes: from mice to men. Diabetologia, 2020, 63, 2253-2259.	2.9	72
26	Contraction influences <i>Per2</i> gene expression in skeletal muscle through a calciumâ€dependent pathway. Journal of Physiology, 2020, 598, 5739-5752.	1.3	26
27	A Cell-Autonomous Signature of Dysregulated Protein Phosphorylation Underlies Muscle Insulin Resistance in Type 2 Diabetes. Cell Metabolism, 2020, 32, 844-859.e5.	7.2	68
28	Time-restricted feeding alters lipid and amino acid metabolite rhythmicity without perturbing clock gene expression. Nature Communications, 2020, 11, 4643.	5.8	69
29	Dynamic changes in DICER levels in adipose tissue control metabolic adaptations to exercise. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23932-23941.	3.3	19
30	Train like an athlete: applying exercise interventions to manage type 2 diabetes. Diabetologia, 2020, 63, 1491-1499.	2.9	50
31	Transcriptomic and epigenomics atlas of myotubes reveals insight into the circadian control of metabolism and development. Epigenomics, 2020, 12, 701-713.	1.0	12
32	Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity. Nature Communications, 2020, 11, 470.	5.8	235
33	Circulating Exosomal miR-20b-5p Is Elevated in Type 2 Diabetes and Could Impair Insulin Action in Human Skeletal Muscle. Diabetes, 2019, 68, 515-526.	0.3	99
34	Identification of two microRNA nodes as potential cooperative modulators of liver metabolism. Hepatology Research, 2019, 49, 1451-1465.	1.8	9
35	Role of Diacylglycerol Kinases in Glucose and Energy Homeostasis. Trends in Endocrinology and Metabolism, 2019, 30, 603-617.	3.1	20
36	Major Advances and Discoveries in Diabetes - 2019 in Review. Current Diabetes Reports, 2019, 19, 118.	1.7	10

#	Article	IF	CITATIONS
37	Secreted protein acidic and rich in cysteine (SPARC) improves glucose tolerance <i>via</i> AMPâ€activated protein kinase activation. FASEB Journal, 2019, 33, 10551-10562.	0.2	25
38	Modified UCN2 Peptide Acts as an Insulin Sensitizer in Skeletal Muscle of Obese Mice. Diabetes, 2019, 68, 1403-1414.	0.3	15
39	Time of Exercise Specifies the Impact on Muscle Metabolic Pathways and Systemic Energy Homeostasis. Cell Metabolism, 2019, 30, 92-110.e4.	7.2	176
40	Changes in Vitamin D Status in Overweight Middle-Aged Adults with or without Impaired Glucose Metabolism in Two Consecutive Nordic Summers. Journal of Nutrition and Metabolism, 2019, 2019, 1-8.	0.7	5
41	Paternal highâ€fat diet transgenerationally impacts hepatic immunometabolism. FASEB Journal, 2019, 33, 6269-6280.	0.2	15
42	Short-term low-calorie diet remodels skeletal muscle lipid profile and metabolic gene expression in obese adults. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E178-E185.	1.8	8
43	Afternoon exercise is more efficacious than morning exercise at improving blood glucose levels in individuals with type 2 diabetes: a randomised crossover trial. Diabetologia, 2019, 62, 233-237.	2.9	152
44	Circadian rhythms and exercise — re-setting the clock in metabolic disease. Nature Reviews Endocrinology, 2019, 15, 197-206.	4.3	213
45	Interplay between diet, exercise and the molecular circadian clock in orchestrating metabolic adaptations of adipose tissue. Journal of Physiology, 2019, 597, 1439-1450.	1.3	27
46	Regulation of glucose uptake and inflammation markers by FOXO1 and FOXO3 in skeletal muscle. Molecular Metabolism, 2019, 20, 79-88.	3.0	37
47	The ZBED6–IGF2 axis has a major effect on growth of skeletal muscle and internal organs in placental mammals. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2048-E2057.	3.3	48
48	Proteomics Analysis of Skeletal Muscle from Leptinâ€Đeficient <i>ob/ob</i> Mice Reveals Adaptive Remodeling of Metabolic Characteristics and Fiber Type Composition. Proteomics, 2018, 18, e1700375.	1.3	22
49	FAK tyrosine phosphorylation is regulated by AMPK and controls metabolism in human skeletal muscle. Diabetologia, 2018, 61, 424-432.	2.9	20
50	Diacylglycerol kinase α deficiency alters inflammation markers in adipose tissue in response to a high-fat diet. Journal of Lipid Research, 2018, 59, 273-282.	2.0	13
51	Sphingolipid changes do not underlie fatty acid-evoked GLUT4 insulin resistance nor inflammation signals in muscle cells[S]. Journal of Lipid Research, 2018, 59, 1148-1163.	2.0	15
52	Effects of high-fat diet and AMP-activated protein kinase modulation on the regulation of whole-body lipid metabolism. Journal of Lipid Research, 2018, 59, 1276-1282.	2.0	14
53	Skeletal Muscle Insulin Sensitivity Show Circadian Rhythmicity Which Is Independent of Exercise Training Status. Frontiers in Physiology, 2018, 9, 1198.	1.3	37
54	AMPK activation negatively regulates GDAP1, which influences metabolic processes and circadian gene expression in skeletal muscle. Molecular Metabolism, 2018, 16, 12-23.	3.0	17

#	Article	IF	CITATIONS
55	Acute sleep loss results in tissue-specific alterations in genome-wide DNA methylation state and metabolic fuel utilization in humans. Science Advances, 2018, 4, eaar8590.	4.7	86
56	Retained differentiation capacity of human skeletal muscle satellite cells from spinal cord-injured individuals. Physiological Reports, 2018, 6, e13739.	0.7	5
57	Human Carboxylesterase 2 Reverses Obesity-Induced Diacylglycerol Accumulation and Glucose Intolerance. Cell Reports, 2017, 18, 636-646.	2.9	91
58	Diacylglycerol kinase ε deficiency preserves glucose tolerance and modulates lipid metabolism in obese mice. Journal of Lipid Research, 2017, 58, 907-915.	2.0	15
59	Altered miR-29 Expression in Type 2 Diabetes Influences Glucose and Lipid Metabolism in Skeletal Muscle. Diabetes, 2017, 66, 1807-1818.	0.3	157
60	The Limits of Exercise Physiology: From Performance to Health. Cell Metabolism, 2017, 25, 1000-1011.	7.2	113
61	Early vertebrate origin and diversification of small transmembrane regulators of cellular ion transport. Journal of Physiology, 2017, 595, 4611-4630.	1.3	11
62	Insulin and Glucose Alter Death-Associated Protein Kinase 3 (DAPK3) DNA Methylation in Human Skeletal Muscle. Diabetes, 2017, 66, 651-662.	0.3	28
63	Protein kinase N2 regulates AMP kinase signaling and insulin responsiveness of glucose metabolism in skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E483-E491.	1.8	18
64	DGKζ deficiency protects against peripheral insulin resistance and improves energy metabolism. Journal of Lipid Research, 2017, 58, 2324-2333.	2.0	14
65	Grandpaternal-induced transgenerational dietary reprogramming of the unfolded protein response in skeletal muscle. Molecular Metabolism, 2017, 6, 621-630.	3.0	12
66	Enhanced Muscle Insulin Sensitivity After Contraction/Exercise Is Mediated by AMPK. Diabetes, 2017, 66, 598-612.	0.3	137
67	SnapShot: Exercise Metabolism. Cell Metabolism, 2016, 24, 342-342.e1.	7.2	49
68	Direct effects of exercise on kynurenine metabolism in people with normal glucose tolerance or type 2 diabetes. Diabetes/Metabolism Research and Reviews, 2016, 32, 754-761.	1.7	39
69	Building Bridges through Scientific Conferences. Cell, 2016, 167, 1155-1158.	13.5	14
70	The role of diet and exercise in the transgenerational epigenetic landscape of T2DM. Nature Reviews Endocrinology, 2016, 12, 441-451.	4.3	149
71	Exercise Promotes Healthy Aging of Skeletal Muscle. Cell Metabolism, 2016, 23, 1034-1047.	7.2	335
72	Diacylglycerol kinase-δregulates AMPK signaling, lipid metabolism, and skeletal muscle energetics. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E51-E60.	1.8	31

#	Article	IF	CITATIONS
73	Obesity and Bariatric Surgery Drive Epigenetic Variation of Spermatozoa in Humans. Cell Metabolism, 2016, 23, 369-378.	7.2	435
74	AMPKÎ ³ 3 is dispensable for skeletal muscle hypertrophy induced by functional overload. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E461-E472.	1.8	9
75	Altered DNA methylation of glycolytic and lipogenic genes in liver from obese and type 2 diabetic patients. Molecular Metabolism, 2016, 5, 171-183.	3.0	115
76	High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Molecular Metabolism, 2016, 5, 184-197.	3.0	317
77	Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis. PLoS Medicine, 2016, 13, e1002179.	3.9	324
78	mRNA expression of diacylglycerol kinase isoforms in insulin-sensitive tissues: effects of obesity and insulin resistance. Physiological Reports, 2015, 3, e12372.	0.7	19
79	MicroRNA-208b progressively declines after spinal cord injury in humans and is inversely related to myostatin expression. Physiological Reports, 2015, 3, e12622.	0.7	15
80	Turning the page. Diabetologia, 2015, 58, 2685-2687.	2.9	0
81	Influence of physical activity and gender on arterial function in type 2 diabetes, normal and impaired glucose tolerance. Diabetes and Vascular Disease Research, 2015, 12, 315-324.	0.9	12
82	Bioenergetic cues shift FXR splicing towards FXRα2 to modulate hepatic lipolysis and fatty acid metabolism. Molecular Metabolism, 2015, 4, 891-902.	3.0	33
83	Methotrexate Promotes Glucose Uptake and Lipid Oxidation in Skeletal Muscle via AMPK Activation. Diabetes, 2015, 64, 360-369.	0.3	66
84	Prior AICAR Stimulation Increases Insulin Sensitivity in Mouse Skeletal Muscle in an AMPK-Dependent Manner. Diabetes, 2015, 64, 2042-2055.	0.3	115
85	Mouse-Human Experimental Epigenetic Analysis Unmasks Dietary Targets and Genetic Liability for Diabetic Phenotypes. Cell Metabolism, 2015, 21, 138-149.	7.2	98
86	Temporal analysis of reciprocal miRNA-mRNA expression patterns predicts regulatory networks during differentiation in human skeletal muscle cells. Physiological Genomics, 2015, 47, 45-57.	1.0	16
87	Exercise remodels subcutaneous fat tissue and improves metabolism. Nature Reviews Endocrinology, 2015, 11, 198-200.	4.3	20
88	Looking Ahead Perspective: Where Will the Future of Exercise Biology Take Us?. Cell Metabolism, 2015, 22, 25-30.	7.2	59
89	Acute Sleep Loss Induces Tissue-Specific Epigenetic and Transcriptional Alterations to Circadian Clock Genes in Men. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1255-E1261.	1.8	132
90	Changes in Gene Expression in Responders and Nonresponders to a Low-Intensity Walking Intervention. Diabetes Care, 2015, 38, 1154-1160.	4.3	34

JULEEN RAE ZIERATH

#	Article	IF	CITATIONS
91	Association of the ACTN3 R577X polymorphism with glucose tolerance and gene expression of sarcomeric proteins in human skeletal muscle. Physiological Reports, 2015, 3, e12314.	0.7	16
92	Skeletal muscle AMP-activated protein kinase γ1 ^{H151R} overexpression enhances whole body energy homeostasis and insulin sensitivity. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E679-E690.	1.8	14
93	Diabetologia at 50: celebrating half a century of progress in diabetes research and care. Diabetologia, 2015, 58, 1685-1687.	2.9	0
94	Effects of sleeping with reduced carbohydrate availability on acute training responses. Journal of Applied Physiology, 2015, 119, 643-655.	1.2	82
95	Arterial stiffness estimation in healthy subjects: a validation of oscillometric (Arteriograph) and tonometric (SphygmoCor) techniques. Hypertension Research, 2014, 37, 999-1007.	1.5	62
96	Altered promoter methylation of PDK4, IL1 B, IL6, and TNF after Roux-en Y gastric bypass. Surgery for Obesity and Related Diseases, 2014, 10, 671-678.	1.0	62
97	Dynamic epigenetic responses to muscle contraction. Drug Discovery Today, 2014, 19, 1010-1014.	3.2	29
98	Integrative Biology of Exercise. Cell, 2014, 159, 738-749.	13.5	753
99	Proteasome inhibition in skeletal muscle cells unmasks metabolic derangements in type 2 diabetes. American Journal of Physiology - Cell Physiology, 2014, 307, C774-C787.	2.1	28
100	Skeletal Muscle PGC-1α1 Modulates Kynurenine Metabolism and Mediates Resilience to Stress-Induced Depression. Cell, 2014, 159, 33-45.	13.5	581
101	A simple and rapid method to characterize lipid fate in skeletal muscle. BMC Research Notes, 2014, 7, 391.	0.6	12
102	A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature, 2014, 512, 190-193.	13.7	338
103	Profiling of human myotubes reveals an intrinsic proteomic signature associated with type 2 diabetes. Translational Proteomics, 2014, 2, 25-38.	1.2	16
104	Effects of AMPK Activation on Insulin Sensitivity and Metabolism in Leptin-Deficient <i>ob/ob</i> Mice. Diabetes, 2014, 63, 1560-1571.	0.3	32
105	Regulation of miRNAs in human skeletal muscle following acute endurance exercise and shortâ€ŧerm endurance training. Journal of Physiology, 2013, 591, 4637-4653.	1.3	207
106	Weight Loss after Gastric Bypass Surgery in Human Obesity Remodels Promoter Methylation. Cell Reports, 2013, 3, 1020-1027.	2.9	236
107	Exercise Metabolism and the Molecular Regulation of Skeletal Muscle Adaptation. Cell Metabolism, 2013, 17, 162-184.	7.2	1,502
108	Epigenetic flexibility in metabolic regulation: disease cause and prevention?. Trends in Cell Biology, 2013, 23, 203-209.	3.6	127

#	Article	IF	CITATIONS
109	Time Course Analysis Reveals Gene-Specific Transcript and Protein Kinetics of Adaptation to Short-Term Aerobic Exercise Training in Human Skeletal Muscle. PLoS ONE, 2013, 8, e74098.	1.1	97
110	The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E524-E533.	1.8	71
111	Acute Exercise Remodels Promoter Methylation in Human Skeletal Muscle. Cell Metabolism, 2012, 15, 405-411.	7.2	729
112	Mitochondrial regulators of fatty acid metabolism reflect metabolic dysfunction in type 2 diabetes mellitus. Metabolism: Clinical and Experimental, 2012, 61, 175-185.	1.5	79
113	Evidence for non-CpG methylation in mammals. Experimental Cell Research, 2011, 317, 2555-2561.	1.2	46
114	Keeping ahead of the fast pace of science. Diabetologia, 2011, 54, 1-3.	2.9	31
115	2â€D DIGE analysis of the mitochondrial proteome from human skeletal muscle reveals time courseâ€dependent remodelling in response to 14 consecutive days of endurance exercise training. Proteomics, 2011, 11, 1413-1428.	1.3	68
116	Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity. Diabetes/Metabolism Research and Reviews, 2011, 27, 286-297.	1.7	187
117	Research Highlights: Nutritional status affects the epigenomic profile of peripheral blood cells. Epigenomics, 2011, 3, 259-260.	1.0	5
118	Suppression of 5′-Nucleotidase Enzymes Promotes AMP-activated Protein Kinase (AMPK) Phosphorylation and Metabolism in Human and Mouse Skeletal Muscle. Journal of Biological Chemistry, 2011, 286, 34567-34574.	1.6	65
119	Spatial insulin signalling in isolated skeletal muscle preparations. Journal of Cellular Biochemistry, 2010, 109, 943-949.	1.2	1
120	Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor γ coactivator-1α mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. Journal of Physiology, 2010, 588, 1779-1790.	1.3	305
121	VALIDATION OF THEIN VITROINCUBATION OF EXTENSOR DIGITORUM LONGUS MUSCLE FROM MICE WITH A MATHEMATICAL MODEL. Journal of Biological Systems, 2010, 18, 687-707.	0.5	1
122	Interdependence of AMPK and SIRT1 for Metabolic Adaptation to Fasting and Exercise in Skeletal Muscle. Cell Metabolism, 2010, 11, 213-219.	7.2	752
123	Environmental Factors Contributing to the Regulation of Insulin Sensitivity in Type 2 Diabetic Patients. FASEB Journal, 2010, 24, 303.3.	0.2	0
124	Insulin-stimulated Phosphorylation of the Rab GTPase-activating Protein TBC1D1 Regulates GLUT4 Translocation. Journal of Biological Chemistry, 2009, 284, 30016-30023.	1.6	75
125	T Cell–Mediated Inflammation in Adipose Tissue Does Not Cause Insulin Resistance in Hyperlipidemic Mice. Circulation Research, 2009, 104, 961-968.	2.0	41
126	Role of the AMPKγ3 isoform in hypoxia-stimulated glucose transport in glycolytic skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E1388-E1394.	1.8	7

#	Article	IF	CITATIONS
127	Kinetics of GLUT4 Trafficking in Rat and Human Skeletal Muscle. Diabetes, 2009, 58, 847-854.	0.3	57
128	Non-CpG Methylation of the PGC-1α Promoter through DNMT3B Controls Mitochondrial Density. Cell Metabolism, 2009, 10, 189-198.	7.2	530
129	Tbc1d1 mutation in lean mouse strain confers leanness and protects from diet-induced obesity. Nature Genetics, 2008, 40, 1354-1359.	9.4	174
130	Downregulation of Diacylglycerol Kinase Delta Contributes to Hyperglycemia-Induced Insulin Resistance. Cell, 2008, 132, 375-386.	13.5	194
131	Gain-of-function R225Q Mutation in AMP-activated Protein Kinase γ3 Subunit Increases Mitochondrial Biogenesis in Glycolytic Skeletal Muscle. Journal of Biological Chemistry, 2008, 283, 35724-35734.	1.6	157
132	Malonyl CoenzymeA Decarboxylase Regulates Lipid and Glucose Metabolism in Human Skeletal Muscle. Diabetes, 2008, 57, 1508-1516.	0.3	69
133	Relationship between AMPK and the transcriptional balance of clock-related genes in skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E1032-E1037.	1.8	60
134	Skeletal muscle AMP kinase as a target to prevent pathogenesis of Type 2 diabetes. Expert Review of Endocrinology and Metabolism, 2007, 2, 477-485.	1.2	1
135	MAP4K4 Gene Silencing in Human Skeletal Muscle Prevents Tumor Necrosis Factor-α-induced Insulin Resistance. Journal of Biological Chemistry, 2007, 282, 7783-7789.	1.6	119
136	Calcineurin Regulates Skeletal Muscle Metabolism via Coordinated Changes in Gene Expression. Journal of Biological Chemistry, 2007, 282, 1607-1614.	1.6	71
137	The Path to Insulin Resistance: Paved with Ceramides?. Cell Metabolism, 2007, 5, 161-163.	7.2	31
138	Insulin signaling and glucose transport in insulin resistant human skeletal muscle. Cell Biochemistry and Biophysics, 2007, 48, 103-113.	0.9	119
139	Early signaling responses to divergent exercise stimuli in skeletal muscle from wellâ€ŧrained humans. FASEB Journal, 2006, 20, 190-192.	0.2	285
140	siRNA-based gene silencing reveals specialized roles of IRS-1/Akt2 and IRS-2/Akt1 in glucose and lipid metabolism in human skeletal muscle. Cell Metabolism, 2006, 4, 89-96.	7.2	180
141	Low-intensity exercise increases skeletal muscle protein expression of PPARδ and UCP3 in type 2 diabetic patients. Diabetes/Metabolism Research and Reviews, 2006, 22, 492-498.	1.7	97
142	AMPK-Mediated AS160 Phosphorylation in Skeletal Muscle Is Dependent on AMPK Catalytic and Regulatory Subunits. Diabetes, 2006, 55, 2051-2058.	0.3	239
143	Insulin Signaling and Glucose Transport in Skeletal Muscle From First-Degree Relatives of Type 2 Diabetic Patients. Diabetes, 2006, 55, 1283-1288.	0.3	68
144	Opposite Transcriptional Regulation in Skeletal Muscle of AMP-activated Protein Kinase γ3 R225Q Transgenic Versus Knock-out Mice. Journal of Biological Chemistry, 2006, 281, 7244-7252.	1.6	49

#	Article	IF	CITATIONS
145	Neuregulins Mediate Calcium-induced Glucose Transport during Muscle Contraction. Journal of Biological Chemistry, 2006, 281, 21690-21697.	1.6	47
146	Signalling mechanisms in skeletal muscle: role in substrate selection and muscle adaptation. Essays in Biochemistry, 2006, 42, 1-12.	2.1	61
147	AMP-activated protein kinase signaling in metabolic regulation. Journal of Clinical Investigation, 2006, 116, 1776-1783.	3.9	840
148	5′â€AMPâ€activated protein kinase regulates skeletal muscle glycogen content and ergogenics. FASEB Journal, 2005, 19, 771-779.	0.2	63
149	Insulin-Stimulated Phosphorylation of the Akt Substrate AS160 Is Impaired in Skeletal Muscle of Type 2 Diabetic Subjects. Diabetes, 2005, 54, 1692-1697.	0.3	241
150	Changes in Exercise-Induced Gene Expression in 5'-AMP-Activated Protein Kinase Â3-Null and Â3 R225Q Transgenic Mice. Diabetes, 2005, 54, 3484-3489.	0.3	53
151	Effects of Metformin and Rosiglitazone Treatment on Insulin Signaling and Glucose Uptake in Patients With Newly Diagnosed Type 2 Diabetes: A Randomized Controlled Study. Diabetes, 2005, 54, 1459-1467.	0.3	86
152	Skeletal Muscle Fiber Type: Influence on Contractile and Metabolic Properties. PLoS Biology, 2004, 2, e348.	2.6	375
153	Exercise-induced mitogen-activated protein kinase signalling in skeletal muscle. Proceedings of the Nutrition Society, 2004, 63, 227-232.	0.4	64
154	Expression profiling of the Î ³ -subunit isoforms of AMP-activated protein kinase suggests a major role for Î ³ 3 in white skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E194-E200.	1.8	151
155	The 5′-AMP-activated Protein Kinase γ3 Isoform Has a Key Role in Carbohydrate and Lipid Metabolism in Glycolytic Skeletal Muscle. Journal of Biological Chemistry, 2004, 279, 38441-38447.	1.6	264
156	Prior serum- and AICAR-induced AMPK activation in primary human myocytes does not lead to subsequent increase in insulin-stimulated glucose uptake. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E553-E557.	1.8	26
157	MEF2 activation in differentiated primary human skeletal muscle cultures requires coordinated involvement of parallel pathways. American Journal of Physiology - Cell Physiology, 2004, 286, C1410-C1416.	2.1	55
158	Insulin Signaling Defects in Type 2 Diabetes. Reviews in Endocrine and Metabolic Disorders, 2004, 5, 111-117.	2.6	39
159	The effect of hyperglycaemia on glucose disposal and insulin signal transduction in skeletal muscle. Best Practice and Research in Clinical Endocrinology and Metabolism, 2003, 17, 385-398.	2.2	23
160	Skeletal muscle insulin resistance: Is it important for the pathogenesis of Type 2 diabetes after all?. Journal of Endocrinological Investigation, 2003, 26, 690-692.	1.8	3
161	5-Amino-Imidazole Carboxamide Riboside Increases Glucose Transport and Cell-Surface GLUT4 Content in Skeletal Muscle From Subjects With Type 2 Diabetes. Diabetes, 2003, 52, 1066-1072.	0.3	214
162	Invited Review: Exercise training-induced changes in insulin signaling in skeletal muscle. Journal of Applied Physiology, 2002, 93, 773-781.	1.2	168

#	Article	IF	CITATIONS
163	Gene expression of the p85α regulatory subunit of phosphatidylinositol 3-kinase in skeletal muscle from type 2 diabetic subjects. Pflugers Archiv European Journal of Physiology, 2002, 445, 25-31.	1.3	10
164	From Receptor to Effector: Insulin Signal Transduction in Skeletal Muscle from Type II Diabetic Patients. Annals of the New York Academy of Sciences, 2002, 967, 120-134.	1.8	49
165	Evidence against high glucose as a mediator of ERK1/2 or p38 MAPK phosphorylation in rat skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E1255-E1259.	1.8	8
166	Exercise-associated differences in an array of proteins involved in signal transduction and glucose transport. Journal of Applied Physiology, 2001, 90, 29-34.	1.2	55
167	Marathon running increases ERK1/2 and p38 MAP kinase signalling to downstream targets in human skeletal muscle. Journal of Physiology, 2001, 536, 273-282.	1.3	98
168	Metabolic adaptations in skeletal muscle overexpressing GLUT4: effects on muscle and physical activity. FASEB Journal, 2001, 15, 958-969.	0.2	85
169	Muscle damage impairs insulin stimulation of IRS-1, PI 3-kinase, and Akt-kinase in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E206-E212.	1.8	106
170	Effects of exercise on mitogen- and stress-activated kinase signal transduction in human skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R1716-R1721.	0.9	36
171	Effect of Contraction on Mitogen-activated Protein Kinase Signal Transduction in Skeletal Muscle. Journal of Biological Chemistry, 2000, 275, 1457-1462.	1.6	137
172	Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4â€deficient mice. FASEB Journal, 1999, 13, 2246-2256.	0.2	68
173	Discovery of a Small Molecule Insulin Mimetic with Antidiabetic Activity in Mice. Science, 1999, 284, 974-977.	6.0	446
174	In vitro analysis of the glucose-transport system in GLUT4-null skeletal muscle. Biochemical Journal, 1999, 342, 321-328.	1.7	43
175	Insulin action in skeletal muscle from patients with NIDDM. Molecular and Cellular Biochemistry, 1998, 182, 153-160.	1.4	65
176	Exercise in the Management of Non???Insulin-Dependent Diabetes Mellitus. Sports Medicine, 1998, 25, 25-35.	3.1	85
177	Phosphatidylinositol 3-Kinase-mediated Endocytosis of Renal Na+,K+-ATPase α Subunit in Response to Dopamine. Molecular Biology of the Cell, 1998, 9, 1209-1220.	0.9	82
178	Restoration of Hypoxia-stimulated Glucose Uptake in GLUT4-deficient Muscles by Muscle-specific GLUT4 Transgenic Complementation. Journal of Biological Chemistry, 1998, 273, 20910-20915.	1.6	33
179	Role of Skeletal Muscle in Thiazolidinedione Insulin Sensitizer (PPARÎ ³ Agonist) Action. Endocrinology, 1998, 139, 5034-5041.	1.4	124
180	Exerciseâ€induced overexpression of key regulatory proteins involved in glucose uptake and metabolism in tetraplegic persons: molecular mechanism for improved glucose homeostasis. FASEB Journal, 1998, 12, 1701-1712.	0.2	111

#	Article	IF	CITATIONS
181	Skeletal muscle insulin resistance after trauma: insulin signaling and glucose transport. American Journal of Physiology - Endocrinology and Metabolism, 1998, 275, E351-E358.	1.8	22
182	Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle. FASEB Journal, 1998, 12, 1379-1389.	0.2	209
183	Differential Regulation of Phosphoinositide 3-Kinase Adapter Subunit Variants by Insulin in Human Skeletal Muscle. Journal of Biological Chemistry, 1997, 272, 19000-19007.	1.6	57
184	Development of Decreased Insulin-Induced Glucose Transport in Skeletal Muscle of Glucose-Intolerant Hybrids of Diabetic GK Rats. Clinical Science, 1995, 88, 301-306.	1.8	9
185	Exercise Training in Obese Diabetic Patients. Sports Medicine, 1992, 14, 171-189.	3.1	44
186	Insulin-like growth factor II stimulates glucose transport in human skeletal muscle. FEBS Letters, 1992, 307, 379-382.	1.3	24
187	Nutritional, physiological, and menstrual status of distance runners. Medicine and Science in Sports and Exercise, 1989, 21, 120???125.	0.2	105