Bernd H A Rehm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9052450/publications.pdf

Version: 2024-02-01

181 papers 12,819 citations

53 h-index 27406 106 g-index

195 all docs 195
docs citations

195 times ranked 10456 citing authors

#	Article	IF	Citations
1	Ambient Temperature Stable, Scalable COVIDâ€19 Polymer Particle Vaccines Induce Protective Immunity. Advanced Healthcare Materials, 2022, 11, e2102089.	7.6	14
2	SynBio: A Progressive Open Access Journal Publishing New Horizons in the Synthetic Biology. SynBio, 2022, 1, 1-2.	3.0	1
3	Use Intein Cleavable Polyhydroxyalkanoate Synthase Fusions to Improve Protein Solubility. Methods in Molecular Biology, 2022, 2406, 145-153.	0.9	0
4	Ambient Temperature Stable, Scalable COVIDâ€19 Polymer Particle Vaccines Induce Protective Immunity (Adv. Healthcare Mater. 3/2022). Advanced Healthcare Materials, 2022, 11, .	7.6	1
5	Cold atmospheric plasma for preventing infection of viruses that use ACE2 for entry. Theranostics, 2022, 12, 2811-2832.	10.0	8
6	Intranasal Delivery of Antigen-Coated Polymer Particles Protects against <i>Pseudomonas aeruginosa</i> Infection. ACS Infectious Diseases, 2022, 8, 744-756.	3.8	6
7	Polymeric nanoparticle vaccines to combat emerging and pandemic threats. Biomaterials, 2021, 268, 120597.	11.4	93
8	In-air particle generation by on-chip electrohydrodynamics. Lab on A Chip, 2021, 21, 1779-1787.	6.0	11
9	Engineered Mycobacterium tuberculosis antigen assembly into core-shell nanobeads for diagnosis of tuberculosis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 34, 102374.	3 . 3	6
10	Bioengineered Polymer Nanobeads for Isolation and Electrochemical Detection of Cancer Biomarkers. ACS Applied Materials & Detection of Cancer Biomarkers.	8.0	23
11	Electrochemical Detection of Global DNA Methylation Using Biologically Assembled Polymer Beads. Cancers, 2021, 13, 3787.	3.7	1
12	A Pseudomonas aeruginosa-Derived Particulate Vaccine Protects against P. aeruginosa Infection. Vaccines, 2021, 9, 803.	4.4	12
13	Particulate Mycobacterial Vaccines Induce Protective Immunity against Tuberculosis in Mice. Nanomaterials, 2021, 11, 2060.	4.1	7
14	Epitope-coated polymer particles elicit neutralising antibodies against Plasmodium falciparum sporozoites. Npj Vaccines, 2021, 6, 141.	6.0	6
15	Engineering Antigens to Assemble into Polymer Particle Vaccines for Prevention of Streptococcus suis Infection. Vaccines, 2021, 9, 1386.	4.4	3
16	Analysis of the alginate O-acetylation machinery in Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 2020, 104, 2179-2191.	3.6	14
17	Bacterially assembled biopolyester nanobeads for removing cadmium from water. Water Research, 2020, 186, 116357.	11.3	14
18	Pseudomonas aeruginosa Biofilms. International Journal of Molecular Sciences, 2020, 21, 8671.	4.1	322

#	Article	IF	CITATIONS
19	An amplification-free method for the detection of HOTAIR long non-coding RNA. Analytica Chimica Acta, 2020, 1132, 66-73.	5.4	10
20	Editorial: Pathway, Genetic and Process Engineering of Microbes for Biopolymer Synthesis. Frontiers in Bioengineering and Biotechnology, 2020, 8, 618383.	4.1	4
21	Bioengineered Polyhydroxyalkanoates as Immobilized Enzyme Scaffolds for Industrial Applications. Frontiers in Bioengineering and Biotechnology, 2020, 8, 156.	4.1	30
22	Covalent Functionalization of Bioengineered Polyhydroxyalkanoate Spheres Directed by Specific Protein-Protein Interactions. Frontiers in Bioengineering and Biotechnology, 2020, 8, 44.	4.1	18
23	Mannuronic Acid in Lowâ€Risk and Intermediateâ€1â€Risk Myelodysplastic Syndromes. Journal of Clinical Pharmacology, 2020, 60, 879-888.	2.0	0
24	Bacterial biopolymers: from pathogenesis to advanced materials. Nature Reviews Microbiology, 2020, 18, 195-210.	28.6	257
25	Bioinformatic prospecting and phylogenetic analysis reveals 94 undescribed circular bacteriocins and key motifs. BMC Microbiology, 2020, 20, 77.	3.3	20
26	Catalytically Active Bioseparation Resin Utilizing a Covalent Intermediate for Tagless Protein Purification. ACS Applied Bio Materials, 2020, 3, 8911-8922.	4.6	12
27	Self-assembled particulate vaccine elicits strong immune responses and reduces Mycobacterium avium subsp. paratuberculosis infection in mice. Scientific Reports, 2020, 10, 22289.	3.3	6
28	The Regulation of Alginate Biosynthesis via Cyclic di-GMP Signaling. , 2020, , 223-238.		0
29	The Role of Alginate in Bacterial Biofilm Formation. Biologically-inspired Systems, 2019, , 517-537.	0.2	8
30	Alginate Encapsulation of Bioengineered Proteinâ€Coated Polyhydroxybutyrate Particles: A New Platform for Multifunctional Composite Materials. Advanced Functional Materials, 2019, 29, 1901893.	14.9	9
31	Polyester as Antigen Carrier toward Particulate Vaccines. Biomacromolecules, 2019, 20, 3213-3232.	5.4	33
32	A randomized, controlled, phase <scp>II</scp> clinical trial of βâ€Dâ€mannuronic acid (M2000) in preâ€surgical breast cancer patients at early stage (T1â€T2). Clinical and Experimental Pharmacology and Physiology, 2019, 46, 527-532.	1.9	5
33	Innovative antigen carrier system for the development of tuberculosis vaccines. FASEB Journal, 2019, 33, 7505-7518.	0.5	19
34	Advanced liquid biopsy technologies for circulating biomarker detection. Journal of Materials Chemistry B, 2019, 7, 6670-6704.	5.8	118
35	International multicenter randomized, placebo-controlled phase III clinical trial of \hat{l}^2 -d-mannuronic acid in rheumatoid arthritis patients. Inflammopharmacology, 2019, 27, 911-921.	3.9	13
36	Oral administration effects of \hat{l}^2 -d-mannuronic acid (M2000) on Th17 and regulatory T cells in patients with ankylosing spondylitis. Biomedicine and Pharmacotherapy, 2018, 100, 495-500.	5.6	19

#	Article	IF	Citations
37	A phase I/II randomized, controlled, clinical trial for assessment of the efficacy and safety of \hat{I}^2 -d-mannuronic acid in rheumatoid arthritis patients. Inflammopharmacology, 2018, 26, 737-745.	3.9	17
38	Bioengineered polyester beads co-displaying protein and carbohydrate-based antigens induce protective immunity against bacterial infection. Scientific Reports, 2018, 8, 1888.	3.3	35
39	Bioengineering toward direct production of immobilized enzymes: A paradigm shift in biocatalyst design. Bioengineered, 2018, 9, 6-11.	3.2	34
40	The effects of \hat{I}^2 -d-mannuronic acid (M2000), as a novel NSAID, on COX1 and COX2 activities and gene expression in ankylosing spondylitis patients and the murine monocyte/macrophage, J774 cell line. Inflammopharmacology, 2018, 26, 375-384.	3.9	10
41	Alginate Biosynthesis and Biotechnological Production. Springer Series in Biomaterials Science and Engineering, 2018, , 1-25.	1.0	24
42	Evaluation of the efficacy and safety of \hat{l}^2 -d-mannuronic acid in patients with ankylosing spondylitis: A 12-week randomized, placebo-controlled, phase I/II clinical trial. International Immunopharmacology, 2018, 54, 112-117.	3.8	26
43	Purification of therapeutic proteins mediated by in vivo polyester immobilized sortase. Biotechnology Letters, 2018, 40, 369-373.	2.2	8
44	Design of Bacterial Inclusion Bodies as Antigen Carrier Systems. Advanced Biology, 2018, 2, 1800118.	3.0	8
45	Design of Modular Polyhydroxyalkanoate Scaffolds for Protein Immobilization by Directed Ligation. Biomacromolecules, 2018, 19, 4098-4112.	5.4	21
46	Design and Biological Assembly of Polyester Beads Displaying Pneumococcal Antigens as Particulate Vaccine. ACS Biomaterials Science and Engineering, 2018, 4, 3413-3424.	5.2	16
47	Engineering Mycobacteria for the Production of Self-Assembling Biopolyesters Displaying Mycobacterial Antigens for Use as a Tuberculosis Vaccine. Applied and Environmental Microbiology, 2017, 83, .	3.1	12
48	Activation Mechanism and Cellular Localization of Membrane-Anchored Alginate Polymerase in Pseudomonas aeruginosa. Applied and Environmental Microbiology, 2017, 83, .	3.1	24
49	Self-assembled particulate PsaA as vaccine against Streptococcus pneumoniae infection. Heliyon, 2017, 3, e00291.	3.2	29
50	Introduction of \hat{l}^2 - d -mannuronic acid (M2000) as a novel NSAID with immunosuppressive property based on COX-1/COX-2 activity and gene expression. Pharmacological Reports, 2017, 69, 1067-1072.	3.3	19
51	Bioengineering a bacterial pathogen to assemble its own particulate vaccine capable of inducing cellular immunity. Scientific Reports, 2017, 7, 41607.	3.3	23
52	Bioengineering towards self-assembly of particulate vaccines. Current Opinion in Biotechnology, 2017, 48, 42-53.	6.6	30
53	Immunological properties and protective efficacy of a single mycobacterial antigen displayed on polyhydroxybutyrate beads. Microbial Biotechnology, 2017, 10, 1434-1440.	4.2	10
54	Self-Assembled Protein-Coated Polyhydroxyalkanoate Beads: Properties and Biomedical Applications. ACS Biomaterials Science and Engineering, 2017, 3, 3043-3057.	5.2	55

#	Article	IF	Citations
55	Applications of Microbial Biopolymers in Display Technology. , 2017, , 569-585.		О
56	Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Frontiers in Cellular and Infection Microbiology, 2017, 7, 39.	3.9	950
57	Purification of target proteins from intracellular inclusions mediated by intein cleavable polyhydroxyalkanoate synthase fusions. Microbial Cell Factories, 2017, 16, 184.	4.0	15
58	Engineering Bacillus megaterium for production of functional intracellular materials. Microbial Cell Factories, 2017, 16, 211.	4.0	28
59	Assessing the Performance of Floating Biofilters for Oxidation of Methane from Dairy Effluent Ponds. Journal of Environmental Quality, 2017, 46, 272-280.	2.0	8
60	The Potent Inhibitory Effect of Î ² -D-Mannuronic Acid (M2000) as a Novel NSAID with Immunosuppressive Property on Anti-Cyclic Citrullinated Peptide Antibodies, Rheumatoid Factor and Anti-dsDNA Antibodies in Patients with Rheumatoid Arthritis. Current Drug Discovery Technologies, 2017, 14, 206-214.	1.2	11
61	Editorial: Microbial Exopolysaccharides: From Genes to Applications. Frontiers in Microbiology, 2016, 7, 308.	3.5	15
62	Enzyme Engineering for In Situ Immobilization. Molecules, 2016, 21, 1370.	3.8	83
63	Protective T Cell and Antibody Immune Responses against Hepatitis C Virus Achieved Using a Biopolyester-Bead-Based Vaccine Delivery System. Vaccine Journal, 2016, 23, 370-378.	3.1	33
64	Assessment of farm soil, biochar, compost and weathered pine mulch to mitigate methane emissions. Applied Microbiology and Biotechnology, 2016, 100, 9365-9379.	3.6	13
65	Biological function of a polysaccharide degrading enzyme in the periplasm. Scientific Reports, 2016, 6, 31249.	3.3	16
66	Immunogencity of antigens from Mycobacterium tuberculosis self-assembled as particulate vaccines. International Journal of Medical Microbiology, 2016, 306, 624-632.	3.6	33
67	Does acidification of a soil biofilter compromise its methane-oxidising capacity?. Biology and Fertility of Soils, 2016, 52, 573-583.	4.3	14
68	Display of Antigens on Polyester Inclusions Lowers the Antigen Concentration Required for a Bovine Tuberculosis Skin Test. Vaccine Journal, 2016, 23, 19-26.	3.1	22
69	Applications of Microbial Biopolymers in Display Technology. , 2016, , 1-17.		0
70	In vivo polyester immobilized sortase for tagless protein purification. Microbial Cell Factories, 2015, 14, 190.	4.0	24
71	Alginate Polymerization and Modification Are Linked in Pseudomonas aeruginosa. MBio, 2015, 6, e00453-15.	4.1	53
72	Insights into the surface topology of polyhydroxyalkanoate synthase: self-assembly of functionalized inclusions. Applied Microbiology and Biotechnology, 2015, 99, 8045-8053.	3.6	10

#	Article	IF	Citations
73	Immobilization of active lipase B from Candida antarctica on the surface of polyhydroxyalkanoate inclusions. Biotechnology Letters, 2015, 37, 831-835.	2.2	14
74	Surface display of highly-stable Desulfovibrio vulgaris carbonic anhydrase on polyester beads for CO2 capture. Biotechnology Letters, 2015, 37, 1415-1420.	2.2	13
75	Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Frontiers in Microbiology, 2015, 6, 496.	3.5	409
76	Membrane-anchored MucR mediates nitrate-dependent regulation of alginate production in Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 2015, 99, 7253-7265.	3.6	26
77	Bactericidal Compounds Controlling Growth of the Plant Pathogen Pseudomonas syringae pv. actinidiae, Which Forms Biofilms Composed of a Novel Exopolysaccharide. Applied and Environmental Microbiology, 2015, 81, 4026-4036.	3.1	40
78	Synthetic biology towards the synthesis of customâ€made polysaccharides. Microbial Biotechnology, 2015, 8, 19-20.	4.2	22
79	Bioengineering of Bacteria To Assemble Custom-Made Polyester Affinity Resins. Applied and Environmental Microbiology, 2015, 81, 282-291.	3.1	18
80	Revaccination of Cattle with Bacille Calmette-Guérin Two Years after First Vaccination when Immunity Has Waned, Boosted Protection against Challenge with Mycobacterium bovis. PLoS ONE, 2014, 9, e106519.	2.5	41
81	Polyhydroyxalkanoate Synthase Fusions as a Strategy for Oriented Enzyme Immobilisation. Molecules, 2014, 19, 8629-8643.	3.8	28
82	Use of Bacterial Polyhydroxyalkanoates in Protein Display Technologies. Springer Protocols, 2014, , 71-86.	0.3	13
83	New Skin Test for Detection of Bovine Tuberculosis on the Basis of Antigen-Displaying Polyester Inclusions Produced by Recombinant Escherichia coli. Applied and Environmental Microbiology, 2014, 80, 2526-2535.	3.1	36
84	An alginate-like exopolysaccharide biosynthesis gene cluster involved in biofilm aerial structure formation by Pseudomonas alkylphenolia. Applied Microbiology and Biotechnology, 2014, 98, 4137-4148.	3.6	16
85	<i>In Vivo</i> Self-Assembly of Stable Green Fluorescent Protein Fusion Particles and Their Uses in Enzyme Immobilization. Applied and Environmental Microbiology, 2014, 80, 3062-3071.	3.1	16
86	Genetics and regulation of bacterial alginate production. Environmental Microbiology, 2014, 16, 2997-3011.	3.8	94
87	Novel particulate vaccines utilizing polyester nanoparticles (bio-beads) for protection against Mycobacterium bovis infection‰A review. Veterinary Immunology and Immunopathology, 2014, 158, 8-13.	1.2	26
88	<i>In Vivo</i> Self-Assembly of Fluorescent Protein Microparticles Displaying Specific Binding Domains. Bioconjugate Chemistry, 2013, 24, 1314-1323.	3.6	14
89	Dual Roles of Pseudomonas aeruginosa AlgE in Secretion of the Virulence Factor Alginate and Formation of the Secretion Complex. Applied and Environmental Microbiology, 2013, 79, 2002-2011.	3.1	23
90	Bioengineering of Bacterial Polymer Inclusions Catalyzing the Synthesis of <i>N</i> -Acetylneuraminic Acid. Applied and Environmental Microbiology, 2013, 79, 3116-3121.	3.1	34

#	Article	IF	CITATIONS
91	Insights into the Assembly of the Alginate Biosynthesis Machinery in Pseudomonas aeruginosa. Applied and Environmental Microbiology, 2013, 79, 3264-3272.	3.1	45
92	Microbial alginate production, modification and its applications. Microbial Biotechnology, 2013, 6, 637-650.	4.2	243
93	Role of PelF in Pel Polysaccharide Biosynthesis in Pseudomonas aeruginosa. Applied and Environmental Microbiology, 2013, 79, 2968-2978.	3.1	26
94	Escherichia coli NemA Is an Efficient Chromate Reductase That Can Be Biologically Immobilized to Provide a Cell Free System for Remediation of Hexavalent Chromium. PLoS ONE, 2013, 8, e59200.	2.5	78
95	Vaccines Displaying Mycobacterial Proteins on Biopolyester Beads Stimulate Cellular Immunity and Induce Protection against Tuberculosis. Vaccine Journal, 2012, 19, 37-44.	3.1	61
96	Engineering bacteria to manufacture functionalized polyester beads. Bioengineered, 2012, 3, 203-208.	3.2	37
97	Immobilization of organophosphohydrolase OpdA from <i>Agrobacterium radiobacter</i> by overproduction at the surface of polyester inclusions inside engineered <i>Escherichia coli</i> Biotechnology and Bioengineering, 2012, 109, 1101-1108.	3.3	37
98	Relevant uses of surface proteins – display on selfâ€organized biological structures. Microbial Biotechnology, 2012, 5, 188-202.	4.2	26
99	Identification of a periplasmic AlgK–AlgX–MucD multiprotein complex in Pseudomonas aeruginosa involved in biosynthesis and regulation of alginate. Applied Microbiology and Biotechnology, 2012, 93, 215-227.	3.6	33
100	Role of Exopolysaccharides in Pseudomonas aeruginosa Biofilm Formation and Architecture. Applied and Environmental Microbiology, 2011, 77, 5238-5246.	3.1	380
101	Production of a Particulate Hepatitis C Vaccine Candidate by an Engineered Lactococcus lactis Strain. Applied and Environmental Microbiology, 2011, 77, 8516-8522.	3.1	53
102	Recombinant Protein Production by <i>In Vivo</i> Polymer Inclusion Display. Applied and Environmental Microbiology, 2011, 77, 6706-6709.	3.1	21
103	Structural basis for alginate secretion across the bacterial outer membrane. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13083-13088.	7.1	81
104	Bacterial biosynthesis of alginates. Journal of Chemical Technology and Biotechnology, 2010, 85, 752-759.	3.2	135
105	Design of a single-chain multi-enzyme fusion protein establishing the polyhydroxybutyrate biosynthesis pathway. Journal of Biotechnology, 2010, 147, 31-36.	3.8	14
106	Bacterial polymers: biosynthesis, modifications and applications. Nature Reviews Microbiology, 2010, 8, 578-592.	28.6	695
107	Membrane Topology of Outer Membrane Protein AlgE, Which Is Required for Alginate Production in <i>Pseudomonas aeruginosa</i> . Applied and Environmental Microbiology, 2010, 76, 1806-1812.	3.1	31
108	MucR, a Novel Membrane-Associated Regulator of Alginate Biosynthesis in <i>Pseudomonas aeruginosa </i> . Applied and Environmental Microbiology, 2009, 75, 1110-1120.	3.1	129

#	Article	IF	CITATIONS
109	Bacterial Polyester Inclusions Engineered To Display Vaccine Candidate Antigens for Use as a Novel Class of Safe and Efficient Vaccine Delivery Agents. Applied and Environmental Microbiology, 2009, 75, 7739-7744.	3.1	53
110	Tolerance of the Ralstonia eutropha Class I Polyhydroxyalkanoate Synthase for Translational Fusions to Its C Terminus Reveals a New Mode of Functional Display. Applied and Environmental Microbiology, 2009, 75, 5461-5466.	3.1	40
111	Impact of Alginate Overproduction on Attachment and Biofilm Architecture of a Supermucoid <i>Pseudomonas aeruginosa </i> Strain. Applied and Environmental Microbiology, 2009, 75, 6022-6025.	3.1	64
112	ZZ polyester beads: An efficient and simple method for purifying IgG from mouse hybridoma supernatants. Journal of Immunological Methods, 2009, 346, 71-74.	1.4	24
113	Protein engineering towards biotechnological production of bifunctional polyester beads. Biotechnology Letters, 2009, 31, 131-137.	2.2	26
114	Molecular characterization of Alg8, a putative glycosyltransferase, involved in alginate polymerisation. Journal of Biotechnology, 2009, 140, 176-183.	3.8	29
115	Production of Functionalized Biopolyester Granules by Recombinant <i>Lactococcus lactis</i> Applied and Environmental Microbiology, 2009, 75, 4668-4675.	3.1	46
116	One-Step Production of Immobilized α-Amylase in Recombinant <i>Escherichia coli</i> Applied and Environmental Microbiology, 2009, 75, 2012-2016.	3.1	45
117	Gut-Associated Denitrification and In Vivo Emission of Nitrous Oxide by the Earthworm Families Megascolecidae and Lumbricidae in New Zealand. Applied and Environmental Microbiology, 2009, 75, 3430-3436.	3.1	38
118	Bacterial Polyhydroxyalkanoate Granules: Biogenesis, Structure, and Potential Use as Nano- Micro-Beads in Biotechnological and Biomedical Applications. Biomacromolecules, 2009, 10, 660-669.	5 . 4	223
119	The polyhydroxyalkanoate biosynthesis genes are differentially regulated in planktonic- and biofilm-grown Pseudomonas aeruginosa. Journal of Biotechnology, 2008, 133, 442-452.	3.8	18
120	Protein engineering of streptavidin for in vivo assembly of streptavidin beads. Journal of Biotechnology, 2008, 134, 266-274.	3.8	41
121	Multifunctional Inorganic-Binding Beads Self-Assembled Inside Engineered Bacteria. Bioconjugate Chemistry, 2008, 19, 2072-2080.	3.6	52
122	In Vivo Production of scFv-Displaying Biopolymer Beads Using a Self-Assembly-Promoting Fusion Partner. Bioconjugate Chemistry, 2008, 19, 254-262.	3 . 6	46
123	Human Host Defense Peptide LL-37 Prevents Bacterial Biofilm Formation. Infection and Immunity, 2008, 76, 4176-4182.	2.2	551
124	Gene/Protein Sequence Analysis. Springer Protocols, 2008, , 323-347.	0.3	0
125	Production of M2000 (\hat{l}^2 -d-mannuronic acid) and its therapeutic effect on experimental nephritis. Environmental Toxicology and Pharmacology, 2007, 24, 60-66.	4.0	36
126	The inherent property of polyhydroxyalkanoate synthase to form spherical PHA granules at the cell poles: The core region is required for polar localization. Journal of Biotechnology, 2007, 132, 238-245.	3.8	33

#	Article	IF	CITATIONS
127	Recombinant Escherichia coli produces tailor-made biopolyester granules for applications in fluorescence activated cell sorting: functional display of the mouse interleukin-2 and myelin oligodendrocyte glycoprotein. BMC Biotechnology, 2007, 7, 3.	3.3	60
128	Biogenesis of microbial polyhydroxyalkanoate granules: a platform technology for the production of tailor-made bioparticles. Current Issues in Molecular Biology, 2007, 9, 41-62.	2.4	104
129	Alg44, a unique protein required for alginate biosynthesis inPseudomonas aeruginosa. FEBS Letters, 2006, 580, 3883-3888.	2.8	84
130	Biochemical analysis ofÂalginate biosynthesis protein AlgX from PseudomonasÂaeruginosa: purification ofÂanÂAlgX-MucD (AlgY) protein complex. Biochimie, 2006, 88, 245-251.	2.6	28
131	Genetics and Biochemistry of Polyhydroxyalkanoate Granule Self-assembly: The Key Role of Polyester Synthases. Biotechnology Letters, 2006, 28, 207-213.	2.2	108
132	Bacterial alginates: from biosynthesis to applications. Biotechnology Letters, 2006, 28, 1701-1712.	2.2	289
133	Recombinant Escherichia coli Strain Produces a ZZ Domain Displaying Biopolyester Granules Suitable for Immunoglobulin G Purification. Applied and Environmental Microbiology, 2006, 72, 7394-7397.	3.1	60
134	PsID Is a Secreted Protein Required for Biofilm Formation by Pseudomonas aeruginosa. Applied and Environmental Microbiology, 2006, 72, 3066-3068.	3.1	44
135	In Vitro Alginate Polymerization and the Functional Role of Alg8 in Alginate Production by <i>Pseudomonas aeruginosa</i> . Applied and Environmental Microbiology, 2006, 72, 298-305.	3.1	92
136	In Vivo Enzyme Immobilization by Use of Engineered Polyhydroxyalkanoate Synthase. Applied and Environmental Microbiology, 2006, 72, 1777-1783.	3.1	84
137	Sodium Alginate as a Novel Therapeutic Option in Experimental Colitis. Scandinavian Journal of Immunology, 2005, 61, 316-321.	2.7	31
138	Treatment of Experimental Arthritis with M2000, a Novel Designed Non-Steroidal Anti-Inflammatory Drug. Scandinavian Journal of Immunology, 2005, 61, 435-441.	2.7	49
139	Treatment of experimental immune complex glomerulonephritis by sodium alginate. Vascular Pharmacology, 2005, 43, 30-35.	2.1	10
140	In vivo monitoring of PHA granule formation using GFP-labeled PHA synthases. FEMS Microbiology Letters, 2005, 248, 93-100.	1.8	102
141	Nitrogen-dependent regulation of medium-chain length polyhydroxyalkanoate biosynthesis genes in pseudomonads. Biotechnology Letters, 2005, 27, 279-282.	2.2	37
142	M2000, Foundation of a New Generation Among NSAIDs. Letters in Drug Design and Discovery, 2005, 2, 412-423.	0.7	2
143	Novel Immunosuppressive Therapy by M2000 in Experimental Multiple Sclerosis. Immunopharmacology and Immunotoxicology, 2005, 27, 255-265.	2.4	51
144	Expression of the psl Operon in Pseudomonas aeruginosa PAO1 Biofilms: PslA Performs an Essential Function in Biofilm Formation. Applied and Environmental Microbiology, 2005, 71, 4407-4413.	3.1	78

#	Article	IF	CITATIONS
145	M2000: a revolution in pharmacology. Medical Science Monitor, 2005, 11, PI53-63.	1.1	20
146	The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology (United) Tj ETQq0 0 0 rgBT	Overbock	10 Tu3 5 0 697 1
147	Mâ€2000, as a New Antiâ€inflammatory Molecule in Treatment of Experimental Nephrosis. Immunopharmacology and Immunotoxicology, 2004, 26, 611-619.	2.4	19
148	Letter to the Editor: Backbone resonance assignment of an aminoglycoside-3′-phosphotransferase type lla. Journal of Biomolecular NMR, 2004, 28, 93-94.	2.8	0
149	Regulation of polyhydroxyalkanoate biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa. FEMS Microbiology Letters, 2004, 237, 1-7.	1.8	37
150	Chemopreventive effect of M2000, a new anti-inflammatory agent. Medical Science Monitor, 2004, 10, Pl105-9.	1.1	21
151	Polyester synthases: natural catalysts for plastics. Biochemical Journal, 2003, 376, 15-33.	3.7	623
152	Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues. Biochemical Journal, 2003, 374, 413-421.	3.7	102
153	Biochemical Characterization of the Pseudomonas putida 3-Hydroxyacyl ACP:CoA Transacylase, Which Diverts Intermediates of Fatty Acid de Novo Biosynthesis. Journal of Biological Chemistry, 2002, 277, 42926-42936.	3.4	62
154	Biochemical and enzymological properties of the polyhydroxybutyrate synthase from the extremely halophilic archaeon strain 56. Archives of Biochemistry and Biophysics, 2002, 403, 284-291.	3.0	44
155	Molecular characterization of the poly(3-hydroxybutyrate) (PHB) synthase from Ralstonia eutropha: in vitro evolution, site-specific mutagenesis and development of a PHB synthase protein model. BBA - Proteins and Proteomics, 2002, 1594, 178-190.	2.1	80
156	The role of the fatty acid \hat{l}^2 -oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida. Archives of Microbiology, 2002, 178, 149-160.	2.2	88
157	In vivo evolution of the Aeromonas punctata polyhydroxyalkanoate (PHA) synthase: isolation and characterization of modified PHA synthases with enhanced activity. Applied Microbiology and Biotechnology, 2002, 59, 477-482.	3.6	75
158	Formation of Short Chain Length/Medium Chain Length Polyhydroxyalkanoate Copolymers by Fatty Acid β-Oxidation Inhibited <i>Ralstoniaeutropha</i> li>. Biomacromolecules, 2002, 3, 208-213.	5.4	83
159	Bioinformatic tools for DNA/protein sequence analysis, functional assignment of genes and protein classification. Applied Microbiology and Biotechnology, 2001, 57, 579-592.	3.6	81
160	Heterologous expression of the acyl-acyl carrier protein thioesterase gene from the plant Umbellularia californica mediates polyhydroxyalkanoate biosynthesis in recombinant Escherichia coli. Applied Microbiology and Biotechnology, 2001, 55, 205-209.	3 . 6	30
161	Matrix-assisted in vitro refolding of Pseudomonas aeruginosa class II polyhydroxyalkanoate synthase from inclusion bodies produced in recombinant Escherichia coli. Biochemical Journal, 2001, 358, 263-268.	3.7	61
162	Role of Fatty Acid De Novo Biosynthesis in Polyhydroxyalkanoic Acid (PHA) and Rhamnolipid Synthesis by Pseudomonads: Establishment of the Transacylase (PhaG)-Mediated Pathway for PHA Biosynthesis in Escherichia coli. Applied and Environmental Microbiology, 2001, 67, 3102-3109.	3.1	143

#	Article	IF	CITATIONS
163	Polyhydroxybutyrate biosynthesis in Caulobacter crescentus: molecular characterization of the polyhydroxybutyrate synthase. Microbiology (United Kingdom), 2001, 147, 3353-3358.	1.8	89
164	In vitro synthesis of poly(3-hydroxydecanoate): purification and enzymatic characterization of type II polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 2000, 54, 37-43.	3.6	92
165	Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor. Applied Microbiology and Biotechnology, 2000, 54, 319-325.	3.6	152
166	Homologous functional expression of cryptic phaG from Pseudomonas oleovorans establishes the transacylase-mediated polyhydroxyalkanoate biosynthetic pathway. Applied Microbiology and Biotechnology, 2000, 54, 665-670.	3.6	61
167	PhaG-Mediated Synthesis of Poly(3-Hydroxyalkanoates) Consisting of Medium-Chain-Length Constituents from Nonrelated Carbon Sources in Recombinant Pseudomonas fragi. Applied and Environmental Microbiology, 2000, 66, 2117-2124.	3.1	82
168	A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Archives of Microbiology, 1999, 171, 73-80.	2.2	637
169	Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. International Journal of Biological Macromolecules, 1999, 25, 3-19.	7.5	351
170	Analysis of 4-Phosphopantetheinylation of Polyhydroxybutyrate Synthase from <i>Ralstonia eutropha</i> : Generation of β-Alanine Auxotrophic Tn <i>5</i> Mutants and Cloning of the <i>panD</i> Gene Region. Journal of Bacteriology, 1999, 181, 1429-1435.	2.2	35
171	Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR): inhibition of fatty acid AŽÂ²-oxidation by acrylic acid. FEMS Microbiology Letters, 1998, 167, 89-94.	1.8	81
172	A New Metabolic Link between Fatty Acid de NovoSynthesis and Polyhydroxyalkanoic Acid Synthesis. Journal of Biological Chemistry, 1998, 273, 24044-24051.	3.4	259
173	Functional expression of the PHA synthase gene C1 from in results in poly(3-hydroxyalkanoate) synthesis. FEMS Microbiology Letters, 1997, 150, 303-309.	1.8	136
174	Bacterial alginates: biosynthesis and applications. Applied Microbiology and Biotechnology, 1997, 48, 281-288.	3.6	297
175	Membrane topology of the outer membrane protein OprH from Pseudomonas aeruginosa: PCR-mediated site-directed insertion and deletion mutagenesis. Journal of Bacteriology, 1996, 178, 3346-3349.	2.2	24
176	A new Azotobacter vinelandii mannuronan C-5-epimerase gene (algG) is part of an alg gene cluster physically organized in a manner similar to that in Pseudomonas aeruginosa. Journal of Bacteriology, 1996, 178, 5884-5889.	2.2	83
177	The Azotobacter vinelandii gene algJ encodes an outer-membrane protein presumably involved in export of alginate. Microbiology (United Kingdom), 1996, 142, 873-880.	1.8	28
178	Antibody response of rabbits and cystic fibrosis patients to an alginate-specific outer membrane protein of a mucoid strain of Pseudomonas aeruginosa. Microbial Pathogenesis, 1994, 16, 43-51.	2.9	28
179	Overexpression of algE in Escherichia coli: subcellular localization, purification, and ion channel properties. Journal of Bacteriology, 1994, 176, 5639-5647.	2.2	86
180	Regulatory Networks inPseudomonas aeruginosa: Role of Cyclic-di(3′,5′)-Guanylic Acid. , 0, , 195-214.		O

ARTICLE IF CITATIONS

181 Alginates: Biosynthesis and Applications. , 0, , 81-88. 1