Bruno W S Sobral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9052313/publications.pdf Version: 2024-02-01

		41344	30922
123	11,259	49	102
papers	citations	h-index	g-index
131	131	131	14459
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Research, 2014, 42, D581-D591.	14.5	1,222
2	Phytophthora Genome Sequences Uncover Evolutionary Origins and Mechanisms of Pathogenesis. Science, 2006, 313, 1261-1266.	12.6	1,059
3	Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant Journal, 1999, 20, 317-332.	5.7	729
4	The BioPAX community standard for pathway data sharing. Nature Biotechnology, 2010, 28, 935-942.	17.5	613
5	The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Research, 2001, 29, 102-105.	14.5	497
6	Phylogeny of Gammaproteobacteria. Journal of Bacteriology, 2010, 192, 2305-2314.	2.2	317
7	The Landscape of Human Proteins Interacting with Viruses and Other Pathogens. PLoS Pathogens, 2008, 4, e32.	4.7	297
8	A Robust Species Tree for the Alphaproteobacteria. Journal of Bacteriology, 2007, 189, 4578-4586.	2.2	257
9	PATRIC: the Comprehensive Bacterial Bioinformatics Resource with a Focus on Human Pathogenic Species. Infection and Immunity, 2011, 79, 4286-4298.	2.2	252
10	Plasmids and Rickettsial Evolution: Insight from Rickettsia felis. PLoS ONE, 2007, 2, e266.	2.5	212
11	Comparative Genomics Reveal Extensive Transposon-Mediated Genomic Plasticity and Diversity among Potential Effector Proteins within the Genus <i>Coxiella</i> . Infection and Immunity, 2009, 77, 642-656.	2.2	197
12	Comparative Analysis of Expressed Sequences in Phytophthora sojae. Plant Physiology, 2000, 123, 243-254.	4.8	183
13	Rickettsia Phylogenomics: Unwinding the Intricacies of Obligate Intracellular Life. PLoS ONE, 2008, 3, e2018.	2.5	175
14	Parentage determination in maize hybrids using the arbitrarily primed polymerase chain reaction (AP-PCR). Theoretical and Applied Genetics, 1991, 82, 473-476.	3.6	165
15	Computational prediction of host-pathogen protein–protein interactions. Bioinformatics, 2007, 23, i159-i166.	4.1	164
16	Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genomics, 2010, 11, 384.	2.8	161
17	Initial Assessment of Gene Diversity for the Oomycete Pathogen Phytophthora infestans Based on Expressed Sequences. Fungal Genetics and Biology, 1999, 28, 94-106.	2.1	159
18	A Rickettsia Genome Overrun by Mobile Genetic Elements Provides Insight into the Acquisition of Genes Characteristic of an Obligate Intracellular Lifestyle. Journal of Bacteriology, 2012, 194, 376-394.	2.2	152

#	Article	IF	CITATIONS
19	Plant Pathogen Forensics: Capabilities, Needs, and Recommendations. Microbiology and Molecular Biology Reviews, 2006, 70, 450-471.	6.6	143
20	ISYS: a decentralized, component-based approach to the integration of heterogeneous bioinformatics resources. Bioinformatics, 2001, 17, 83-94.	4.1	133
21	The Human-Bacterial Pathogen Protein Interaction Networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis. PLoS ONE, 2010, 5, e12089.	2.5	131
22	PATRIC: The VBI PathoSystems Resource Integration Center. Nucleic Acids Research, 2007, 35, D401-D406.	14.5	125
23	Comparative Phylogenomics and Evolution of the Brucellae Reveal a Path to Virulence. Journal of Bacteriology, 2014, 196, 920-930.	2.2	122
24	Comparative mapping of Andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 14261-14266.	7.1	119
25	Phylogenetic analysis of chloroplast restriction enzyme site mutations in the Saccharinae Griseb. subtribe of the Andropogoneae Dumort. tribe. Theoretical and Applied Genetics, 1994, 87, 843-853.	3.6	117
26	Phylogenetic analysis of organellar DNA sequences in the Andropogoneae: Saccharinae. Theoretical and Applied Genetics, 1994, 88, 933-944.	3.6	111
27	Physical map of the genome of Rhizobium meliloti 1021. Journal of Bacteriology, 1993, 175, 6945-6952.	2.2	108
28	Genome Sequence of Brucella abortus Vaccine Strain S19 Compared to Virulent Strains Yields Candidate Virulence Genes. PLoS ONE, 2008, 3, e2193.	2.5	108
29	Saccharum spontaneum L. â€~SES 208' genetic linkage map combining RFLP- and PCR-based markers. Molecular Breeding, 1995, 1, 165-179.	2.1	107
30	Analysis of Ten <i>Brucella</i> Genomes Reveals Evidence for Horizontal Gene Transfer Despite a Preferred Intracellular Lifestyle. Journal of Bacteriology, 2009, 191, 3569-3579.	2.2	103
31	Phylogenomics Reveals a Diverse <i>Rickettsiales</i> Type IV Secretion System. Infection and Immunity, 2010, 78, 1809-1823.	2.2	101
32	Electrophoretic separation of the three Rhizobium meliloti replicons. Journal of Bacteriology, 1991, 173, 5173-5180.	2.2	95
33	Abscisic Acid Regulates Inflammation via Ligand-binding Domain-independent Activation of Peroxisome Proliferator-activated Receptor Î ³ . Journal of Biological Chemistry, 2011, 286, 2504-2516.	3.4	94
34	An Anomalous Type IV Secretion System in Rickettsia Is Evolutionarily Conserved. PLoS ONE, 2009, 4, e4833.	2.5	89
35	High output genetic mapping of polyploids using PCR-generated markers. Theoretical and Applied Genetics, 1993, 86, 105-112.	3.6	88
36	PIML: the Pathogen Information Markup Language. Bioinformatics, 2005, 21, 116-121.	4.1	88

#	Article	IF	CITATIONS
37	Brucella melitensis Triggers Time-Dependent Modulation of Apoptosis and Down-Regulation of Mitochondrion-Associated Gene Expression in Mouse Macrophages. Infection and Immunity, 2006, 74, 5035-5046.	2.2	85
38	Supervised learning and prediction of physical interactions between human and HIV proteins. Infection, Genetics and Evolution, 2011, 11, 917-923.	2.3	83
39	The Condition-Dependent Transcriptional Landscape of Burkholderia pseudomallei. PLoS Genetics, 2013, 9, e1003795.	3.5	81
40	Immunoregulatory mechanisms of macrophage PPAR-Î ³ in mice with experimental inflammatory bowel disease. Mucosal Immunology, 2011, 4, 304-313.	6.0	74
41	Bacterial DNA Sifted from the Trichoplax adhaerens (Animalia: Placozoa) Genome Project Reveals a Putative Rickettsial Endosymbiont. Genome Biology and Evolution, 2013, 5, 621-645.	2.5	72
42	Genetic Variability of Paecilomyces fumosoroseus Isolates Revealed by Molecular Markers. Journal of Invertebrate Pathology, 1995, 65, 274-282.	3.2	67
43	Early Blood Profiles of Virus Infection in a Monkey Model for Lassa Fever. Journal of Virology, 2007, 81, 7960-7973.	3.4	64
44	Expressed Sequence Tags from Phytophthora sojae Reveal Genes Specific to Development and Infection. Molecular Plant-Microbe Interactions, 2007, 20, 781-793.	2.6	59
45	Curation, integration and visualization of bacterial virulence factors in PATRIC. Bioinformatics, 2015, 31, 252-258.	4.1	58
46	The Phytophthora Genome Initiative Database: informatics and analysis for distributed pathogenomic research. Nucleic Acids Research, 2000, 28, 87-90.	14.5	57
47	Roles of poly-3-hydroxybutyrate (PHB) and glycogen in symbiosis of Sinorhizobium meliloti with Medicago sp Microbiology (United Kingdom), 2007, 153, 388-398.	1.8	57
48	PIGthe pathogen interaction gateway. Nucleic Acids Research, 2009, 37, D647-D650.	14.5	57
49	Proteomic Comparison of Historic and Recently Emerged Hypervirulent <i>Clostridium difficile</i> Strains. Journal of Proteome Research, 2013, 12, 1151-1161.	3.7	52
50	Louse- and flea-borne rickettsioses: biological and genomic analyses. Veterinary Research, 2009, 40, 12.	3.0	52
51	A Quantitative Study of the Division Cycle of Caulobacter crescentus Stalked Cells. PLoS Computational Biology, 2008, 4, e9.	3.2	51
52	Overview of the ID, EPI and REL tasks of BioNLP Shared Task 2011. BMC Bioinformatics, 2012, 13, S2.	2.6	51
53	National Institute of Allergy and Infectious Diseases Bioinformatics Resource Centers: New Assets for Pathogen Informatics. Infection and Immunity, 2007, 75, 3212-3219.	2.2	50
54	Host-Interactive Genes in Amerindian <i>Helicobacter pylori</i> Diverge from Their Old World Homologs and Mediate Inflammatory Responses. Journal of Bacteriology, 2010, 192, 3078-3092.	2.2	50

#	Article	IF	CITATIONS
55	Detection of Nonstructural Protein 6 in Murine Coronavirus-Infected Cells and Analysis of the Transmembrane Topology by Using Bioinformatics and Molecular Approaches. Journal of Virology, 2009, 83, 6957-6962.	3.4	46
56	Members of the Entamoeba histolytica transmembrane kinase family play non-redundant roles in growth and phagocytosis. International Journal for Parasitology, 2010, 40, 833-843.	3.1	44
57	Genetic Variability among Brazilian Isolates of the Entomopathogenic Fungus Metarhizium anisopliae. Journal of Invertebrate Pathology, 1995, 65, 206-210.	3.2	40
58	Sinorhizobium meliloti 1021 Loss-of-Function Deletion Mutation in chvl and Its Phenotypic Characteristics. Molecular Plant-Microbe Interactions, 2010, 23, 153-160.	2.6	40
59	Influence of the Poly-3-Hydroxybutyrate (PHB) Granule-Associated Proteins (PhaP1 and PhaP2) on PHB Accumulation and Symbiotic Nitrogen Fixation in <i>Sinorhizobium meliloti</i> Rm1021. Journal of Bacteriology, 2007, 189, 9050-9056.	2.2	39
60	Genetic analysis of agronomic traits in a cross between sugarcane (Saccharum officinarum L.) and its presumed progenitor (S. robustum Brandes & Jesw. ex Grassl). Molecular Breeding, 1995, 1, 355-363.	2.1	38
61	Amazonian deforestation and soil biodiversity. Conservation Biology, 2019, 33, 590-600.	4.7	38
62	Comparative Genomics of Early-Diverging Brucella Strains Reveals a Novel Lipopolysaccharide Biosynthesis Pathway. MBio, 2012, 3, e00246-12.	4.1	37
63	Helicobacter pylori Colonization Ameliorates Glucose Homeostasis in Mice through a PPAR γ-Dependent Mechanism. PLoS ONE, 2012, 7, e50069.	2.5	37
64	A Life Scientist's Gateway to Distributed Data Management and Computing: The PathPort/ToolBus Framework. OMICS A Journal of Integrative Biology, 2003, 7, 79-88.	2.0	35
65	Standardized Metadata for Human Pathogen/Vector Genomic Sequences. PLoS ONE, 2014, 9, e99979.	2.5	34
66	Targets of the Entamoeba histolytica Transcription Factor URE3-BP. PLoS Neglected Tropical Diseases, 2008, 2, e282.	3.0	34
67	Comparative Genomics of Early-Diverging <i>Brucella</i> Strains Reveals a Novel Lipopolysaccharide Biosynthesis Pathway. MBio, 2012, 3, e00246-11.	4.1	33
68	NodMutDB: a database for genes and mutants involved in symbiosis. Bioinformatics, 2005, 21, 2927-2929.	4.1	32
69	The genomes of the family Rhizobiaceae: size, stability, and rarely cutting restriction endonucleases. Journal of Bacteriology, 1991, 173, 704-709.	2.2	31
70	Loss of a Universal tRNA Feature. Journal of Bacteriology, 2007, 189, 1954-1962.	2.2	31
71	Genetic maps of Saccharum officinarum L. and Saccharum robustum Brandes & Jew. ex grassl. Genetics and Molecular Biology, 1999, 22, 125-132.	1.3	31
72	Identification of new genes in Sinorhizobium meliloti using the Genome Sequencer FLX system. BMC Microbiology, 2008, 8, 72.	3.3	30

#	Article	IF	CITATIONS
73	Temporal Controls of the Asymmetric Cell Division Cycle in Caulobacter crescentus. PLoS Computational Biology, 2009, 5, e1000463.	3.2	30
74	Gene expression in primate liver during viral hemorrhagic fever. Virology Journal, 2009, 6, 20.	3.4	30
75	Chromosome assortment in Saccharum. Theoretical and Applied Genetics, 1994, 89-89, 959-963.	3.6	29
76	Comparative Genomic Analysis at the PATRIC, A Bioinformatic Resource Center. Methods in Molecular Biology, 2014, 1197, 287-308.	0.9	29
77	A rapid DNA extraction method for sugarcane and its relatives. Plant Molecular Biology Reporter, 1992, 10, 66-72.	1.8	28
78	Database resources for the tuberculosis community. Tuberculosis, 2013, 93, 12-17.	1.9	27
79	Variations on the tmRNA gene. RNA Biology, 2009, 6, 355-361.	3.1	26
80	Consensus statement understanding health and malnutrition through a systems approach: the ENOUGH program for early life. Genes and Nutrition, 2014, 9, 378.	2.5	26
81	Characterization of an <i>Entamoeba histolytica</i> High-Mobility-Group Box Protein Induced during Intestinal Infection. Eukaryotic Cell, 2008, 7, 1565-1572.	3.4	24
82	Data Integration for Dynamic and Sustainable Systems Biology Resources: Challenges and Lessons Learned. Chemistry and Biodiversity, 2010, 7, 1124-1141.	2.1	24
83	Comparative nutritional and chemical phenome of Clostridium difficile isolates determined using phenotype microarrays. International Journal of Infectious Diseases, 2014, 27, 20-25.	3.3	24
84	Discrimination ofRhizobium tropici and R. leguminosarumstrains by PCRâ€specific amplification of 16S–23S rDNA spacer region fragments and denaturing gradient gel electrophoresis (DGGE). Letters in Applied Microbiology, 1999, 28, 137-141.	2.2	23
85	Phylogeny and Comparative Genomics: the Shifting Landscape in the Genomics Era. , 0, , 84-141.		23
86	Genome analysis of Bradyrhizobium japonicum serocluster 123 field isolates by using field inversion gel electrophoresis. Applied and Environmental Microbiology, 1990, 56, 1949-1953.	3.1	22
87	Differential Stress Transcriptome Landscape of Historic and Recently Emerged Hypervirulent Strains of Clostridium difficile Strains Determined Using RNA-seq. PLoS ONE, 2013, 8, e78489.	2.5	22
88	Pulse time and agarose concentration affect the electrophoretic mobility of cccDNA during electrophoresis in CHEF and In FIGE. Nucleic Acids Research, 1989, 17, 7359-7369.	14.5	20
89	Gene expression profiling of nonhuman primates exposed to aerosolized Venezuelan equine encephalitis virus. FEMS Immunology and Medical Microbiology, 2007, 51, 462-472.	2.7	20
90	Analysis of rice (Oryza sativa L.) genome using pulsed-field gel electrophoresis and rare-cutting restriction endonucleases. Plant Molecular Biology Reporter, 1990, 8, 253-275.	1.8	19

#	Article	IF	CITATIONS
91	Systems Integration of Biodefense Omics Data for Analysis of Pathogen-Host Interactions and Identification of Potential Targets. PLoS ONE, 2009, 4, e7162.	2.5	18
92	Functional assignment of Mycobacterium tuberculosis proteome revealed byÂgenome-scale fold-recognition. Tuberculosis, 2013, 93, 40-46.	1.9	18
93	A Typhus Group-Specific Protease Defies Reductive Evolution in Rickettsiae. Journal of Bacteriology, 2009, 191, 7609-7613.	2.2	17
94	Integration and visualization of host–pathogen data related to infectious diseases. Bioinformatics, 2011, 27, 2279-2287.	4.1	17
95	Named Entity Recognition for Bacterial Type IV Secretion Systems. PLoS ONE, 2011, 6, e14780.	2.5	17
96	Selection of a phylogenetically informative region of the norovirus genome for outbreak linkage. Virus Genes, 2012, 44, 8-18.	1.6	16
97	An emerging cyberinfrastructure for biodefense pathogen and pathogen–host data. Nucleic Acids Research, 2008, 36, D884-D891.	14.5	15
98	A versatile computational pipeline for bacterial genome annotation improvement and comparative analysis, with Brucella as a use case. Nucleic Acids Research, 2007, 35, 3953-3962.	14.5	14
99	Modulation of hepatic PPAR expression during Ft LVS LPS-induced protection from Francisella tularensis LVS infection. BMC Infectious Diseases, 2010, 10, 10.	2.9	14
100	Genetics, Plants, and the Polymerase Chain Reaction. , 1994, , 304-319.		12
101	Genetics of Polyploids. , 1996, , 3-37.		12
102	RNA-Rocket: an RNA-Seq analysis resource for infectious disease research. Bioinformatics, 2015, 31, 1496-1498.	4.1	11
103	Polymerase Chain Reaction (PCR) Detection and Quantification Using a Short PCR Product and a Synthetic Internal Positive Control. Analytical Biochemistry, 1997, 248, 303-306.	2.4	10
104	Analysis of large DMA from soybean (Glycine max L. Merr.) by pulsed-field gel electrophoresis. Plant Journal, 1992, 2, 133-135.	5.7	8
105	Analysis of large DNA from soybean (Glycine max L. Merr.) by pulsed- field gel electrophoresis Plant Journal, 1992, 2, 133-135.	5.7	6
106	Analysis of High-Throughput Sequencing Data. Methods in Molecular Biology, 2011, 678, 1-11.	0.9	6
107	Brucella. , 2009, , 1-64.		5
108	TBCAP; tuberculosis annotation project. Tuberculosis, 2013, 93, 1-5.	1.9	3

7

#	Article	IF	CITATIONS
109	Methyltransferases as Tools to Alter the Specificity of Restriction Endonucleases. , 1992, 12, 159-172.		2
110	Bioinformatics for Rice Resources. Novartis Foundation Symposium, 2001, 236, 59-84.	1.1	2
111	Common language of bioinformatics. Nature, 1997, 389, 418-418.	27.8	1
112	The Pathogen Resource Integration Center: Implications for Rickettsial Research. Annals of the New York Academy of Sciences, 2005, 1063, 459-465.	3.8	1
113	Cyberinfrastructure for PathoSystems Biology. Lecture Notes in Computer Science, 2005, , 11-27.	1.3	1
114	Information systems approaches to support discovery in agricultural genomics. Advances in Cellular and Molecular Biology of Plants, 2001, , 139-166.	0.2	1
115	Chapter 1.2 Bioinformatics and neuroscience in the post-genomic era. Handbook of Behavioral Neuroscience, 1999, 13, 20-30.	0.0	0
116	Computational Model of the Division Cycle of Caulobacter crescentus. AIP Conference Proceedings, 2007, , .	0.4	0
117	Informatics-Driven Infectious Disease Research. Communications in Computer and Information Science, 2013, , 3-11.	0.5	0
118	From Big Data Analytics and Network Inference to Systems Modeling. , 2016, , 113-144.		0
119	Immunoinformatics Cyberinfrastructure for Modeling and Analytics. , 2016, , 45-61.		0
120	A Quantitative Study of the Division Cycle of Caulobacter crescentus Stalked Cells. PLoS Computational Biology, 2005, preprint, e9.	3.2	0
121	Developing Bioinformatic Resources for Coronaviruses. Advances in Experimental Medicine and Biology, 2006, 581, 395-398.	1.6	0
122	Bioinformatics Resources for the Study of Viruses at the Virginia Bioinformatics Institute. , 2008, , 267-287.		0
123	Further Investigation of the Roles of Poly-3-Hydroxybutyrate (PHB) and Glycogen in Sinorhizobium mellioti-Medicago SP. Symbiosis. , 2005, , 311-312.		0