
Andreas Schätzlein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9051880/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amphotericin B Polymer Nanoparticles Show Efficacy against Candida Species Biofilms. Pathogens, 2022, 11, 73.	2.8	9
2	Particulate levodopa nose-to-brain delivery targets dopamine to the brain with no plasma exposure. International Journal of Pharmaceutics, 2022, 618, 121658.	5.2	3
3	The topical ocular delivery of rapamycin to posterior eye tissues and the suppression of retinal inflammatory disease. International Journal of Pharmaceutics, 2022, 621, 121755.	5.2	6
4	Gene Targeting to the Cerebral Cortex Following Intranasal Administration of Polyplexes. Pharmaceutics, 2022, 14, 1136.	4.5	4
5	Tissue-Engineering the Fibrous Pancreatic Tumour Stroma Capsule in 3D Tumouroids to Demonstrate Paclitaxel Response. International Journal of Molecular Sciences, 2021, 22, 4289.	4.1	7
6	Achieving highly efficient gene transfer to the bladder by increasing the molecular weight of polymer-based nanoparticles. Journal of Controlled Release, 2021, 332, 210-224.	9.9	6
7	A polymeric aqueous tacrolimus formulation for topical ocular delivery. International Journal of Pharmaceutics, 2021, 599, 120364.	5.2	19
8	Polymeric Micelles for the Enhanced Deposition of Hydrophobic Drugs into Ocular Tissues, without Plasma Exposure. Pharmaceutics, 2021, 13, 744.	4.5	11
9	Down-regulation of GP130 signaling sensitizes bladder cancer to cisplatin by impairing Ku70 DNA repair signaling and promoting apoptosis. Cellular Signalling, 2021, 81, 109931.	3.6	7
10	Development of Bio-Functionalized, Raman Responsive, and Potentially Excretable Gold Nanoclusters. Nanomaterials, 2021, 11, 2181.	4.1	1
11	SARS-CoV-2 inhibition using a mucoadhesive, amphiphilic chitosan that may serve as an anti-viral nasal spray. Scientific Reports, 2021, 11, 20012.	3.3	31
12	A Self-Assembling Lipidic Peptide and Selective Partial V2 Receptor Agonist Inhibits Urine Production. Scientific Reports, 2020, 10, 7269.	3.3	2
13	Hyaluronidase Coated Molecular Envelope Technology Nanoparticles Enhance Drug Absorption via the Subcutaneous Route. Molecular Pharmaceutics, 2020, 17, 2599-2611.	4.6	9
14	Increased Efficacy of Oral Fixed-Dose Combination of Amphotericin B and AHCC® Natural Adjuvant against Aspergillosis. Pharmaceutics, 2019, 11, 456.	4.5	9
15	Nose-to-Brain Delivery. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 593-601.	2.5	141
16	Clustering superparamagnetic iron oxide nanoparticles produces organ-targeted high-contrast magnetic resonance images. Nanomedicine, 2019, 14, 1135-1152.	3.3	25
17	Facile aqueous, room temperature preparation of high transverse relaxivity clustered iron oxide nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570, 165-171.	4.7	4
18	Unusual Enthalpy Driven Self Assembly at Room Temperature with Chitosan Amphiphiles. Pharmaceutical Nanotechnology, 2019, 7, 57-71.	1.5	5

Andreas SchÃøzlein

#	Article	IF	CITATIONS
19	Nanomedicines in the treatment of brain tumors. Nanomedicine, 2018, 13, 579-583.	3.3	15
20	Nanoparticulate peptide delivery exclusively to the brain produces tolerance free analgesia. Journal of Controlled Release, 2018, 270, 135-144.	9.9	51
21	T-shaped Peptide Amphiphiles Self Assemble into Nanofiber Networks. Pharmaceutical Nanotechnology, 2018, 5, 215-219.	1.5	2
22	Limiting the level of tertiary amines on polyamines leads to biocompatible nucleic acid vectors. International Journal of Pharmaceutics, 2017, 526, 106-124.	5.2	15
23	Polymer Based Gene Silencing: In Vitro Delivery of SiRNA. Methods in Molecular Biology, 2016, 1445, 149-157.	0.9	0
24	Direct in vivo evidence on the mechanism by which nanoparticles facilitate the absorption of a water insoluble, P-gp substrate. International Journal of Pharmaceutics, 2016, 514, 121-132.	5.2	11
25	Lomustine Nanoparticles Enable Both Bone Marrow Sparing and High Brain Drug Levels – A Strategy for Brain Cancer Treatments. Pharmaceutical Research, 2016, 33, 1289-1303.	3.5	29
26	Chitosan amphiphile coating of peptide nanofibres reduces liver uptake and delivers the peptide to the brain on intravenous administration. Journal of Controlled Release, 2015, 197, 87-96.	9.9	31
27	Detecting polymeric nanoparticles with coherent anti-stokes Raman scattering microscopy in tissues exhibiting fixative-induced autofluorescence. Proceedings of SPIE, 2015, , .	0.8	1
28	Oral Particle Uptake and Organ Targeting Drives the Activity of Amphotericin B Nanoparticles. Molecular Pharmaceutics, 2015, 12, 420-431.	4.6	91
29	A nano-enabled cancer-specific ITCH RNAi chemotherapy booster for pancreatic cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 369-377.	3.3	25
30	Abstract 5527: Oral administration of a nano-enabled form of Met-Enkephalin peptide controls pancreatic cancer growth. Cancer Research, 2015, 75, 5527-5527.	0.9	1
31	Star Shaped Poly(ethylene glycols) Yield Biocompatible Gene Delivery Systems. Pharmaceutical Nanotechnology, 2015, 2, 182-195.	1.5	3
32	Abstract 5530: Chitosan amphiphile nanoparticles reduced the myelosuppressive effects of lomustine. , 2015, , .		0
33	The Oral and Intranasal Delivery of Propofol Using Chitosan Amphiphile Nanoparticles. Pharmaceutical Nanotechnology, 2014, 2, 65-74.	1.5	11
34	Strategies To Deliver Peptide Drugs to the Brain. Molecular Pharmaceutics, 2014, 11, 1081-1093.	4.6	133
35	Chitosan amphiphiles provide new drug delivery opportunities. Polymer International, 2014, 63, 1145-1153.	3.1	23
36	Physical Characterisation and Long-Term Stability Studies on Quaternary Ammonium Palmitoyl Glycol Chitosan (GCPQ)—A New Drug Delivery Polymer. Journal of Pharmaceutical Sciences, 2014, 103, 2296-2306.	3.3	29

#	Article	IF	CITATIONS
37	Optimisation of Synthetic Vector Systems for Cancer Gene Therapy – The Role of the Excess of Cationic Dendrimer Under Physiological Conditions. Current Topics in Medicinal Chemistry, 2014, 14, 1172-1181.	2.1	11
38	Functional characterization of heat shock protein 90 targeted compounds. Analytical Biochemistry, 2013, 438, 107-109.	2.4	3
39	Dextran-pegylated microparticles for enhanced cellular uptake of hydrophobic drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 540-548.	4.3	7
40	Nanofiber-Based Delivery of Therapeutic Peptides to the Brain. ACS Nano, 2013, 7, 1016-1026.	14.6	77
41	Fundamentals of Pharmaceutical Nanoscience. , 2013, , .		16
42	RAPID AND SENSITIVE LIQUID CHROMATOGRAPHIC METHOD FOR DETERMINATION OF ETOPOSIDE IN PLASMA AND BIOLOGICAL SAMPLES. Journal of Liquid Chromatography and Related Technologies, 2013, 36, 2796-2813.	1.0	3
43	GC-Targeted C8-Linked Pyrrolobenzodiazepine–Biaryl Conjugates with Femtomolar in Vitro Cytotoxicity and in Vivo Antitumor Activity in Mouse Models. Journal of Medicinal Chemistry, 2013, 56, 2911-2935.	6.4	50
44	Inhibition of the hypoxia-inducible factor pathway by a G-quadruplex binding small molecule. Scientific Reports, 2013, 3, 2799.	3.3	35
45	Biological Barriers: Transdermal, Oral, Mucosal, Blood Brain Barrier, and the Blood Eye Barrier. , 2013, , 301-336.		4
46	Nanoparticles in Medical Imaging. , 2013, , 543-566.		4
47	Abstract 1129: GC-t8-linked pyrrolobenzodiazepine (PBD)-biaryl conjugates with femptomolar i <i>n vitro</i> cytotoxicity and <i>in vivo</i> antitumour activity in mouse models of pancreatic and breast cancer Cancer Research, 2013, 73, 1129-1129.	0.9	5
48	Gene and Ribonucleic Acid Therapy. , 2013, , 493-510.		0
49	Abstract 4519: Lomustine nanoparticles are effective brain cancer treatments , 2013, , .		0
50	Enhanced Oral Absorption of Hydrophobic and Hydrophilic Drugs Using Quaternary Ammonium Palmitoyl Glycol Chitosan Nanoparticles. Molecular Pharmaceutics, 2012, 9, 14-28.	4.6	97
51	Hydration forces as a tool for the optimization of core–shell nanoparticle vectors for cancer gene therapy. Soft Matter, 2012, 8, 12080.	2.7	19
52	Delivery of Peptides to the Blood and Brain after Oral Uptake of Quaternary Ammonium Palmitoyl Glycol Chitosan Nanoparticles. Molecular Pharmaceutics, 2012, 9, 1764-1774.	4.6	77
53	A Prodrug Nanoparticle Approach for the Oral Delivery of a Hydrophilic Peptide, Leucine ⁵ -enkephalin, to the Brain. Molecular Pharmaceutics, 2012, 9, 1665-1680.	4.6	64
54	Polymer Hydrophobicity Has a Positive Effect on the Oral Absorption of Cyclosporine A from Poly(ethylenimine) Based Nanomedicines. Pharmaceutical Nanotechnology, 2012, 1, 15-25.	1.5	3

Andreas SchÃøzlein

#	Article	IF	CITATIONS
55	Imaging cortical vasculature with stimulated Raman scattering and twoâ€photon photothermal lensing microscopy. Journal of Raman Spectroscopy, 2012, 43, 668-674.	2.5	33
56	Labelâ€free imaging of polymeric nanomedicines using coherent antiâ€stokes Raman scattering microscopy. Journal of Raman Spectroscopy, 2012, 43, 681-688.	2.5	42
57	Exploring uptake mechanisms of oral nanomedicines using multimodal nonlinear optical microscopy. Journal of Biophotonics, 2012, 5, 458-468.	2.3	62
58	Efficient synthesis and biological evaluation of proximicins A, B and C. Bioorganic and Medicinal Chemistry, 2012, 20, 2019-2024.	3.0	26
59	Amphiphilic poly(l-amino acids) — New materials for drug delivery. Journal of Controlled Release, 2012, 161, 523-536.	9.9	138
60	Chapter 7.1. Nanostructures Overcoming the Blood-Brain Barrier: Physiological Considerations and Mechanistic Issues. RSC Drug Discovery Series, 2012, , 329-363.	0.3	5
61	Abstract 1780:Synthesis and antitumor activity of proximicins A, B and C. , 2012, , .		0
62	Abstract 4799: Identification of drug resistance targets in ovarian cancer using a proteomic approach. , 2012, , .		0
63	Chapter 7.3. Drug Delivery Strategies: Nanostructures for Improved Brain Delivery. RSC Drug Discovery Series, 2012, , 392-432.	0.3	0
64	High throughput discovery of heteroaromatic-modifying enzymes allows enhancement of novobiocin selectivity. Chemical Communications, 2011, 47, 10569.	4.1	8
65	Drug Delivery Across the Blood–Brain Barrier. , 2011, , 657-667.		12
66	Polyhedral Non-ionic Surfactant Vesicles. Journal of Pharmacy and Pharmacology, 2011, 49, 606-610.	2.4	27
67	Polymeric Chitosan-based Vesicles for Drug Delivery. Journal of Pharmacy and Pharmacology, 2011, 50, 453-458.	2.4	113
68	Targeting pancreatic cancer with a G-quadruplex ligand. Bioorganic and Medicinal Chemistry, 2011, 19, 7151-7157.	3.0	58
69	Abstract 2517: Hybrid benzofused-biaryl polyamides with selective telomeric G-quadruplex stabilization potential. , 2011, , .		0
70	Nanomedicines from Polymeric Amphiphiles. , 2011, , 495-514.		0
71	The Encapsulation of Bleomycin Within Chitosan Based Polymeric Vesicles Does Not Alter its Biodistribution. Journal of Pharmacy and Pharmacology, 2010, 52, 377-382.	2.4	21
72	Polyamine Aza-Cyclic Compounds Demonstrate Anti-Proliferative Activity In Vitro But Fail to Control Tumour Growth In Vivo. Journal of Pharmaceutical Sciences, 2010, 99, 4642-4657.	3.3	4

Andreas SchÄøzlein

#	Article	IF	CITATIONS
73	<i>In silico</i> modelling of drug–polymer interactions for pharmaceutical formulations. Journal of the Royal Society Interface, 2010, 7, S423-33.	3.4	61
74	Abstract 739: Targeting pancreatic cancers with a quadruplex-binding small molecule. , 2010, , .		0
75	Cancer-Specific Transgene Expression Mediated by Systemic Injection of Nanoparticles. Cancer Research, 2009, 69, 2655-2662.	0.9	74
76	Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. International Journal of Oncology, 2009, 34, 1629-36.	3.3	251
77	Cancer and the blood–brain barrier: â€~Trojan horses' for courses?. British Journal of Pharmacology, 2008, 155, 149-151.	5.4	12
78	High-resolution 3D isotropic MR imaging of mouse flank tumours obtainedin vivowith solenoid RF micro-coil. Physics in Medicine and Biology, 2008, 53, 505-513.	3.0	5
79	Polymers and Dendrimers for Gene Delivery in Gene Therapy. , 2008, , .		2
80	Phase I and Pharmacodynamic Trial of the DNA Methyltransferase Inhibitor Decitabine and Carboplatin in Solid Tumors. Journal of Clinical Oncology, 2007, 25, 4603-4609.	1.6	224
81	In vitro evaluation of cancer-specific NF-κB-CEA enhancer–promoter system for 5-fluorouracil prodrug gene therapy in colon cancer cell lines. British Journal of Cancer, 2007, 97, 745-754.	6.4	15
82	A p53-derived apoptotic peptide derepresses p73 to cause tumor regression in vivo. Journal of Clinical Investigation, 2007, 117, 1008-1018.	8.2	65
83	Polyelectrolyte Nanoparticles with High Drug Loading Enhance the Oral Uptake of Hydrophobic Compounds. Biomacromolecules, 2006, 7, 1509-1520.	5.4	60
84	Carbohydrate-Based Micelle Clusters Which Enhance Hydrophobic Drug Bioavailability by Up to 1 Order of Magnitude. Biomacromolecules, 2006, 7, 3452-3459.	5.4	115
85	Delivering cancer stem cell therapies – A role for nanomedicines?. European Journal of Cancer, 2006, 42, 1309-1315.	2.8	39
86	Vesicles Prepared from Synthetic Amphiphiles $\hat{a} \in$ Polymeric Vesicles and Niosomes. , 2006, , 95-123.		3
87	Dendrimers in gene delivery. Advanced Drug Delivery Reviews, 2005, 57, 2177-2202.	13.7	929
88	Preferential liver gene expression with polypropylenimine dendrimers. Journal of Controlled Release, 2005, 101, 247-258.	9.9	130
89	Synthetic Anticancer Gene Medicine Exploits Intrinsic Antitumor Activity of Cationic Vector to Cure Established Tumors. Cancer Research, 2005, 65, 8079-8084.	0.9	136
90	Tumour gene expression from C12 spermine amphiphile gene delivery systems. Journal of Drug Targeting, 2005, 13, 345-357.	4.4	1

Andreas Schäzlein

#	Article	IF	CITATIONS
91	Tumour-targeted drug and gene delivery: principles and concepts. Expert Reviews in Molecular Medicine, 2004, 6, 1-17.	3.9	20
92	Anticancer Drug Delivery with Transferrin Targeted Polymeric Chitosan Vesicles. Pharmaceutical Research, 2004, 21, 101-107.	3.5	99
93	Evaluation of Generation 2 and 3 Poly(Propylenimine) Dendrimers for the Potential Cellular Delivery of Antisense Oligonucleotides Targeting the Epidermal Growth Factor Receptor. Pharmaceutical Research, 2004, 21, 458-466.	3.5	81
94	PEI-based vesicle-polymer hybrid gene delivery system with improved biocompatibility. International Journal of Pharmaceutics, 2004, 274, 41-52.	5.2	118
95	Glucose-targeted niosomes deliver vasoactive intestinal peptide (VIP) to the brain. International Journal of Pharmaceutics, 2004, 285, 77-85.	5.2	86
96	Highly Hydrophilic Fused Aggregates (Microsponges) from a C12 Spermine Bolaamphiphile. Journal of Physical Chemistry B, 2004, 108, 8129-8135.	2.6	13
97	Gene Transfer with Three Amphiphilic Glycol Chitosans—the Degree of Polymerisation is the Main Controller of Transfection Efficiency. Journal of Drug Targeting, 2004, 12, 527-539.	4.4	40
98	In vitro and in vivo gene transfer with poly(amino acid) vesicles. Journal of Controlled Release, 2003, 93, 193-211.	9.9	69
99	Quantification of β-galactosidase activity after non-viral transfection in vivo. Journal of Controlled Release, 2003, 91, 201-208.	9.9	21
100	Overcoming Semipermeable Barriers, Such as the Skin, with Ultradeformable Mixed Lipid Vesicles, Transfersomes, Liposomes, or Mixed Lipid Micelles. Langmuir, 2003, 19, 10753-10763.	3.5	68
101	Targeting of Synthetic Gene Delivery Systems. Journal of Biomedicine and Biotechnology, 2003, 2003, 149-158.	3.0	64
102	Topotecan in combination with carboplatin: phase I trial evaluation of two treatment schedules. Annals of Oncology, 2002, 13, 399-402.	1.2	8
103	Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1564, 21-30.	2.6	277
104	Solid-phase synthesis of c(RGDfK) derivatives: on-resin cyclisation and lysine functionalisation. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 547-549.	2.2	39
105	The lower-generation polypropylenimine dendrimers are effective gene-transfer agents. Pharmaceutical Research, 2002, 19, 960-967.	3.5	288
106	Non-viral vectors in cancer gene therapy: principles and progress. Anti-Cancer Drugs, 2001, 12, 275-304.	1.4	176
107	Gene delivery with synthetic (non viral) carriers. International Journal of Pharmaceutics, 2001, 229, 1-21.	5.2	350
108	Phage derived peptides for targeting of doxorubicin conjugates to solid tumours. Journal of Controlled Release, 2001, 74, 357-362.	9.9	13

7

Andreas Schã¤zlein

#	Article	IF	CITATIONS
109	Niosomes and polymeric chitosan based vesicles bearing transferrin and glucose ligands for drug targeting. Pharmaceutical Research, 2000, 17, 1250-1258.	3.5	99
110	Tumour vasculature as a target for anticancer therapy. Cancer Treatment Reviews, 2000, 26, 191-204.	7.7	147
111	Preliminary Characterization of Novel Amino Acid Based Polymeric Vesicles as Gene and Drug Delivery Agents. Bioconjugate Chemistry, 2000, 11, 880-891.	3.6	136
112	Ultraflexible vesicles, Transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1368, 201-215.	2.6	387
113	Transfersomes-mediated transepidermal delivery improves the regio-specificity and biological activity of corticosteroids in vivo1Dedicated to the late Dr. Henri Ernest Bodde.1. Journal of Controlled Release, 1997, 45, 211-226.	9.9	152
114	The skin: a pathway for systemic treatment with patches and lipid-based agent carriers. Advanced Drug Delivery Reviews, 1996, 18, 349-378.	13.7	198
115	Transdermal drug carriers: Basic properties, optimization and transfer efficiency in the case of epicutaneously applied peptides. Journal of Controlled Release, 1995, 36, 3-16.	9.9	221