
Ajay K Dalai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9051866/publications.pdf Version: 2024-02-01

ΔΙΛΥΚ ΠΛΙΛΙ

#	Article	IF	CITATIONS
1	Catalytic hydrothermal co-gasification of canola meal and low-density polyethylene using mixed metal oxides for hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 42084-42098.	3.8	18
2	Hydrothermal flames for subaquatic, terrestrial and extraterrestrial applications. Journal of Hazardous Materials, 2022, 424, 127520.	6.5	9
3	Comparative study on fuel characteristics and pyrolysis kinetics of corn residue-based hydrochar produced via microwave hydrothermal carbonization. Chemosphere, 2022, 291, 132787.	4.2	19
4	Innovations in applications and prospects of bioplastics and biopolymers: a review. Environmental Chemistry Letters, 2022, 20, 379-395.	8.3	134
5	Cannabis: Chemistry, extraction and therapeutic applications. Chemosphere, 2022, 289, 133012.	4.2	45
6	lsolation of cellulose fibers from wetland reed grass through an integrated subcritical water hydrolysis-pulping-bleaching process. Fuel, 2022, 311, 122618.	3.4	27
7	Extraction of Sugars and Cellulose Fibers from <i>Cannabis</i> Stems by Hydrolysis, Pulping, and Bleaching. Chemical Engineering and Technology, 2022, 45, 962-970.	0.9	9
8	Thermochemical conversion of organic waste: New horizons for production of green energy. , 2022, , 1-21.		2
9	A Review of Biomass Resources and Thermochemical Conversion Technologies. Chemical Engineering and Technology, 2022, 45, 791-799.	0.9	39
10	Techno – Economic analysis of activated carbon production from spent coffee grounds: Comparative evaluation of different production routes. Energy Conversion and Management: X, 2022, 14, 100218.	0.9	6
11	A review of thermocatalytic conversion of biogenic wastes into crude biofuels and biochemical precursors. Fuel, 2022, 320, 123857.	3.4	16
12	Experimental and Modeling Studies of Torrefaction of Spent Coffee Grounds and Coffee Husk: Effects on Surface Chemistry and Carbon Dioxide Capture Performance. ACS Omega, 2022, 7, 638-653.	1.6	15
13	Process optimization and investigating the effects of torrefaction and pelletization on steam gasification of canola residue. Fuel, 2022, 323, 124239.	3.4	25
14	Synthesis of Biochar From Lignocellulosic Biomass for Diverse Industrial Applications and Energy Harvesting: Effects of Pyrolysis Conditions on the Physicochemical Properties of Biochar. Frontiers in Materials, 2022, 9, .	1.2	18
15	Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass. Waste and Biomass Valorization, 2021, 12, 2145-2169.	1.8	166
16	Metal–organic framework-based functional catalytic materials for biodiesel production: a review. Green Chemistry, 2021, 23, 2595-2618.	4.6	60
17	Subcritical water hydrolysis of Phragmites for sugar extraction and catalytic conversion to platform chemicals. Biomass and Bioenergy, 2021, 145, 105965.	2.9	36
18	Futuristic applications of hydrogen in energy, biorefining, aerospace, pharmaceuticals and metallurgy. International Journal of Hydrogen Energy, 2021, 46, 8885-8905.	3.8	190

Ajay K Dalai

#	Article	IF	CITATIONS
19	Biochar production, activation and adsorptive applications: a review. Environmental Chemistry Letters, 2021, 19, 2237-2259.	8.3	80
20	A Review of Torrefaction Technology for Upgrading Lignocellulosic Biomass to Solid Biofuels. Bioenergy Research, 2021, 14, 645-669.	2.2	81
21	Nextâ€generation biofuels and platform biochemicals from lignocellulosic biomass. International Journal of Energy Research, 2021, 45, 14145-14169.	2.2	79
22	Catalytic Supercritical Water Gasification of Soybean Straw: Effects of Catalyst Supports and Promoters. Industrial & Engineering Chemistry Research, 2021, 60, 5770-5782.	1.8	31
23	Techno-economic evaluation and sensitivity analysis of a conceptual design for supercritical water gasification of soybean straw to produce hydrogen. Bioresource Technology, 2021, 331, 125005.	4.8	52
24	Modeling and process optimization of hydrothermal gasification for hydrogen production: A comprehensive review. Journal of Supercritical Fluids, 2021, 173, 105199.	1.6	60
25	Catalytic conversion of lignocellulosic polysaccharides to commodity biochemicals: a review. Environmental Chemistry Letters, 2021, 19, 4119-4136.	8.3	43
26	Optimization studies for hydrothermal gasification of partially burnt wood from forest fires for hydrogen-rich syngas production using Taguchi experimental design. Environmental Pollution, 2021, 283, 117040.	3.7	15
27	Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis. Chemosphere, 2021, 284, 131372.	4.2	160
28	Slow pyrolysis of agro-food wastes and physicochemical characterization of biofuel products. Chemosphere, 2021, 285, 131431.	4.2	56
29	Taguchi-based process optimization for activation of agro-food waste biochar and performance test for dye adsorption. Chemosphere, 2021, 285, 131531.	4.2	68
30	Optimization and modeling of process parameters during hydrothermal gasification of biomass model compounds to generate hydrogen-rich gas products. International Journal of Hydrogen Energy, 2020, 45, 18275-18288.	3.8	70
31	A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas. Renewable and Sustainable Energy Reviews, 2020, 119, 109546.	8.2	184
32	Physicochemical and Fuel Characteristics of Torrefied Agricultural Residues for Sustainable Fuel Production. Energy & Fuels, 2020, 34, 14169-14181.	2.5	27
33	Hydrothermal gasification of soybean straw and flax straw for hydrogen-rich syngas production: Experimental and thermodynamic modeling. Energy Conversion and Management, 2020, 208, 112545.	4.4	92
34	Techno-economic and life-cycle assessment of integrated Fischer-Tropsch process in ethanol industry for bio-diesel and bio-gasoline production. Energy, 2020, 195, 116985.	4.5	34
35	Effects of bio-additives on the physicochemical properties and mechanical behavior of canola hull fuel pellets. Renewable Energy, 2019, 132, 296-307.	4.3	59
36	Supercritical water gasification of biomass: a state-of-the-art review of process parameters, reaction mechanisms and catalysis. Sustainable Energy and Fuels, 2019, 3, 578-598.	2.5	210

Ajay K Dalai

#	Article	IF	CITATIONS
37	Review of post-combustion carbon dioxide capture technologies using activated carbon. Journal of Environmental Sciences, 2019, 83, 46-63.	3.2	210
38	Physico-chemistry of biochars produced through steam gasification and hydro-thermal gasification of canola hull and canola meal pellets. Biomass and Bioenergy, 2019, 120, 458-470.	2.9	50
39	Hydrothermal catalytic processing of waste cooking oil for hydrogen-rich syngas production. Chemical Engineering Science, 2019, 195, 935-945.	1.9	112
40	Fermentative production of butanol: Perspectives on synthetic biology. New Biotechnology, 2017, 37, 210-221.	2.4	107
41	An assessment of pinecone gasification in subcritical, near-critical and supercritical water. Fuel Processing Technology, 2017, 168, 84-96.	3.7	87
42	Valorization of horse manure through catalytic supercritical water gasification. Waste Management, 2016, 52, 147-158.	3.7	104
43	Gasification of fruit wastes and agro-food residues in supercritical water. Energy Conversion and Management, 2016, 110, 296-306.	4.4	190
44	Biochar as an Exceptional Bioresource for Energy, Agronomy, Carbon Sequestration, Activated Carbon and Specialty Materials. Waste and Biomass Valorization, 2016, 7, 201-235.	1.8	272
45	Supercritical water gasification of fructose as a model compound for waste fruits and vegetables. Journal of Supercritical Fluids, 2015, 104, 112-121.	1.6	87
46	Breakthrough CO 2 adsorption in bio-based activated carbons. Journal of Environmental Sciences, 2015, 34, 68-76.	3.2	103
47	An assessment on the sustainability of lignocellulosic biomass for biorefining. Renewable and Sustainable Energy Reviews, 2015, 50, 925-941.	8.2	223
48	Physico-Chemical Evolution in Lignocellulosic Feedstocks During Hydrothermal Pretreatment and Delignification. Journal of Biobased Materials and Bioenergy, 2015, 9, 295-308.	0.1	25
49	Characteristic Studies on the Pyrolysis Products from Hydrolyzed Canadian Lignocellulosic Feedstocks. Bioenergy Research, 2014, 7, 174-191.	2.2	64
50	Supercritical water gasification of biomass for hydrogen production. International Journal of Hydrogen Energy, 2014, 39, 6912-6926.	3.8	399
51	Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conversion and Biorefinery, 2014, 4, 157-191.	2.9	290
52	Butanol and ethanol production from lignocellulosic feedstock: biomass pretreatment and bioconversion. Energy Science and Engineering, 2014, 2, 138-148.	1.9	94
53	Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass. Fuel, 2014, 125, 90-100.	3.4	266
54	Characterization of North American Lignocellulosic Biomass and Biochars in Terms of their Candidacy for Alternate Renewable Fuels. Bioenergy Research, 2013, 6, 663-677.	2.2	295

#	Article	IF	CITATIONS
55	Slow Pyrolysis of Deoiled Canola Meal: Product Yields and Characterization. Energy & Fuels, 2013, 27, 5268-5279.	2.5	50
56	Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: Effects of heating rate. Journal of Analytical and Applied Pyrolysis, 2013, 104, 485-493.	2.6	212