Gene Hart-Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9051566/publications.pdf

Version: 2024-02-01

218677 330143 1,546 53 26 h-index citations papers

g-index 56 56 56 2292 docs citations times ranked citing authors all docs

37

#	Article	IF	Citations
1	Gene regulation by translational inhibition is determined by Dicer partnering proteins. Nature Plants, 2015, 1, 14027.	9.3	85
2	The methylproteome and the intracellular methylation network. Proteomics, 2012, 12, 564-586.	2.2	73
3	Detection and Characterization of Low Abundance Glycopeptides Via Higher-Energy C-Trap Dissociation and Orbitrap Mass Analysis. Journal of the American Society for Mass Spectrometry, 2012, 23, 124-140.	2.8	68
4	Large Scale Mass Spectrometry-based Identifications of Enzyme-mediated Protein Methylation Are Subject to High False Discovery Rates. Molecular and Cellular Proteomics, 2016, 15, 989-1006.	3.8	65
5	The terminal enzymes of cholesterol synthesis, DHCR24 and DHCR7, interact physically and functionally. Journal of Lipid Research, 2015, 56, 888-897.	4.2	63
6	Novel N-terminal and Lysine Methyltransferases That Target Translation Elongation Factor 1A in Yeast and Human. Molecular and Cellular Proteomics, 2016, 15, 164-176.	3.8	57
7	Enhanced Ionization in Electrospray Ionization Mass Spectrometry of Labile End-Group-Containing Polystyrenes Using Silver(I) Tetrafluoroborate as Doping Salt. Macromolecules, 2008, 41, 1966-1971.	4.8	50
8	Electrospray Ionization Mass Spectrometry Investigation of Reversible Addition Fragmentation Chain Transfer Mediated Acrylate Polymerizations Initiated via60Co γ-Irradiation: Mapping Reaction Pathways. Macromolecules, 2007, 40, 4142-4153.	4.8	44
9	Albumin-micelles via a one-pot technology platform for the delivery of drugs. Chemical Communications, 2014, 50, 6394.	4.1	44
10	Contemporary Mass Spectrometry and the Analysis of Synthetic Polymers: Trends, Techniques and Untapped Potential. Macromolecular Chemistry and Physics, 2010, 211, 1507-1529.	2.2	43
11	A new link between transcriptional initiation and pre-mRNA splicing: The RNA binding histone variant H2A.B. PLoS Genetics, 2017, 13, e1006633.	3.5	42
12	Characterization of Oligo(vinyl phosphonate)s by High-Resolution Electrospray Ionization Mass Spectrometry:  Implications for the Mechanism of Polymerization. Macromolecules, 2008, 41, 1634-1639.	4.8	41
13	Control of Cognate Sense mRNA Translation by cis-Natural Antisense RNAs. Plant Physiology, 2019, 180, 305-322.	4.8	41
14	Tools to Covisualize and Coanalyze Proteomic Data with Genomes and Transcriptomes: Validation of Genes and Alternative mRNA Splicing. Journal of Proteome Research, 2014, 13, 84-98.	3.7	40
15	Genomic Location of PRMT6-Dependent H3R2 Methylation Is Linked to the Transcriptional Outcome of Associated Genes. Cell Reports, 2018, 24, 3339-3352.	6.4	38
16	Albumin–polymer conjugate nanoparticles and their interactions with prostate cancer cells in 2D and 3D culture: comparison between PMMA and PCL. Journal of Materials Chemistry B, 2016, 4, 2017-2027.	5.8	36
17	Non-canonical ubiquitination of the cholesterol-regulated degron of squalene monooxygenase. Journal of Biological Chemistry, 2019, 294, 8134-8147.	3.4	36
18	Enhanced Methylarginine Characterization by Post-Translational Modification-Specific Targeted Data Acquisition and Electron-Transfer Dissociation Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2012, 23, 1376-1389.	2.8	35

#	Article	IF	CITATIONS
19	Living Star Polymer Formation: Detailed Assessment of Poly(acrylate) Radical Reaction Pathways via ESI-MS. Macromolecules, 2008, 41, 3023-3041.	4.8	33
20	Interactions Affected by Arginine Methylation in the Yeast Protein–Protein Interaction Network. Molecular and Cellular Proteomics, 2013, 12, 3184-3198.	3.8	33
21	Polymer-Albumin Conjugate for the Facilitated Delivery of Macromolecular Platinum Drugs. Macromolecular Rapid Communications, 2015, 36, 890-897.	3.9	32
22	Mapping Formation Pathways and End Group Patterns of Stimuli-Responsive Polymer Systems via High-Resolution Electrospray Ionization Mass Spectrometry. Biomacromolecules, 2007, 8, 2404-2415.	5.4	31
23	Degradation of Poly(methyl methacrylate) Model Compounds Under Extreme Environmental Conditions. Macromolecular Chemistry and Physics, 2010, 211, 1083-1097.	2.2	31
24	Yeast proteins Garlp, Noplp, Npl3p, Nsrlp, and Rps2p are natively methylated and are substrates of the arginine methyltransferase Hmtlp. Proteomics, 2015, 15, 3209-3218.	2.2	31
25	Living star polymer formation (RAFT) studied via electrospray ionization mass spectrometry. Journal of Polymer Science Part A, 2008, 46, 1873-1892.	2.3	29
26	ATRP poly(acrylate) star formation: A comparative study between MALDI and ESI mass spectrometry. Polymer, 2009, 50, 1986-2000.	3.8	27
27	Analysis of the Proteome of Saccharomyces cerevisiae for Methylarginine. Journal of Proteome Research, 2013, 12, 3884-3899.	3.7	26
28	A review of electron-capture and electron-transfer dissociation tandem mass spectrometry in polymer chemistry. Analytica Chimica Acta, 2014, 808, 44-55.	5.4	25
29	Proteogenomic Discovery of a Small, Novel Protein in Yeast Reveals a Strategy for the Detection of Unannotated Short Open Reading Frames. Journal of Proteome Research, 2015, 14, 5038-5047.	3.7	25
30	Twin enzymes, divergent control: The cholesterogenic enzymes DHCR14 and LBR are differentially regulated transcriptionally and post-translationally. Journal of Biological Chemistry, 2020, 295, 2850-2865.	3.4	23
31	Stoichiometry of <i>Saccharomyces cerevisiae</i> Lysine Methylation: Insights into Non-histone Protein Lysine Methyltransferase Activity. Journal of Proteome Research, 2014, 13, 1744-1756.	3.7	22
32	MicroRNA Regulatory Mechanisms Play Different Roles in Arabidopsis. Journal of Proteome Research, 2015, 14, 4743-4751.	3.7	22
33	Crosstalk of Phosphorylation and Arginine Methylation in Disordered SRGG Repeats of Saccharomyces cerevisiae Fibrillarin and Its Association with Nucleolar Localization. Journal of Molecular Biology, 2020, 432, 448-466.	4.2	22
34	Light-sheet microscopy as a tool to understanding the behaviour of Polyion complex micelles for drug delivery. Chemical Communications, 2018, 54, 12618-12621.	4.1	21
35	Elongation factor methyltransferase 3 \hat{a} \in "A novel eukaryotic lysine methyltransferase. Biochemical and Biophysical Research Communications, 2014, 451, 229-234.	2.1	20
36	Improved Quantitative Plant Proteomics via the Combination of Targeted and Untargeted Data Acquisition. Frontiers in Plant Science, 2017, 8, 1669.	3.6	18

3

#	Article	IF	Citations
37	Characterization of Protein Methyltransferases Rkm1, Rkm4, Efm4, Efm7, Set5 and Hmt1 Reveals Extensive Post-Translational Modification. Journal of Molecular Biology, 2018, 430, 102-118.	4.2	17
38	Characterization of the Interaction between Arginine Methyltransferase Hmt1 and Its Substrate Npl3: Use of Multiple Cross-Linkers, Mass Spectrometric Approaches, and Software Platforms. Analytical Chemistry, 2018, 90, 9101-9108.	6.5	17
39	Analytical Guidelines for co-fractionation Mass Spectrometry Obtained through Global Profiling of Gold Standard Saccharomyces cerevisiae Protein Complexes. Molecular and Cellular Proteomics, 2020, 19, 1876-1895.	3.8	14
40	A conditional two-hybrid (C2H) system for the detection of protein-protein interactions that are mediated by post-translational modification. Proteomics, 2013, 13, 1059-1064.	2.2	13
41	Proteomic Validation of Transcript Isoforms, Including Those Assembled from RNA-Seq Data. Journal of Proteome Research, 2015, 14, 3541-3554.	3.7	13
42	Lysine methylation modulates the protein–protein interactions of yeast cytochrome C Cyc1p. Proteomics, 2015, 15, 2166-2176.	2.2	13
43	The incorporation of metal cations into polymer backbones: An important consideration in the interpretation of ESI-MS spectra. Polymer, 2009, 50, 5175-5180.	3.8	11
44	MethylQuant: A Tool for Sensitive Validation of Enzyme-Mediated Protein Methylation Sites from Heavy-Methyl SILAC Data. Journal of Proteome Research, 2018, 17, 359-373.	3.7	11
45	Novel Antioxidant Therapy with the Immediate Precursor to Glutathione, \hat{I}^3 -Glutamylcysteine (GGC), Ameliorates LPS-Induced Cellular Stress in In Vitro 3D-Differentiated Airway Model from Primary Cystic Fibrosis Human Bronchial Cells. Antioxidants, 2020, 9, 1204.	5.1	11
46	Phenotypic screen for oxygen consumption rate identifies an anti-cancer naphthoquinone that induces mitochondrial oxidative stress. Redox Biology, 2020, 28, 101374.	9.0	9
47	Protein substrates of the arginine methyltransferase Hmt1 identified by proteome arrays. Proteomics, 2016, 16, 465-476.	2.2	8
48	Knockout of the Hmt1p Arginine Methyltransferase in Saccharomyces cerevisiae Leads to the Dysregulation of Phosphate-associated Genes and Processes. Molecular and Cellular Proteomics, 2018, 17, 2462-2479.	3.8	8
49	Systematic investigation of PRMT6 substrate recognition reveals broad specificity with a preference for an RG motif or basic and bulky residues. FEBS Journal, 2021, 288, 5668-5691.	4.7	7
50	The Saccharomyces cerevisiae poly(A)-binding protein is subject to multiple post-translational modifications, including the methylation of glutamic acid. Biochemical and Biophysical Research Communications, 2014, 443, 543-548.	2.1	5
51	The activity of a yeast Family 16 methyltransferase, Efm2, is affected by a conserved tryptophan and its Nâ€terminal region. FEBS Open Bio, 2016, 6, 1320-1330.	2.3	5
52	MS2â€Deisotoper: A Tool for Deisotoping Highâ€Resolution MS/MS Spectra in Normal and Heavy Isotopeâ€Labelled Samples. Proteomics, 2019, 19, 1800444.	2.2	4
53	Combining Targeted and Untargeted Data Acquisition to Enhance Quantitative Plant Proteomics Experiments. Methods in Molecular Biology, 2020, 2139, 169-178.	0.9	2