
Binhai Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9051238/publications.pdf Version: 2024-02-01

RINHAL THENC

#	Article	IF	CITATIONS
1	p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature, 1999, 398, 708-713.	27.8	1,870
2	Interacting Molecular Loops in the Mammalian Circadian Clock. Science, 2000, 288, 1013-1019.	12.6	1,223
3	Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 2021, 24, 312-325.	14.8	1,098
4	PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nature Neuroscience, 2010, 13, 1075-1081.	14.8	841
5	Nonredundant Roles of the mPer1 and mPer2 Genes in the Mammalian Circadian Clock. Cell, 2001, 105, 683-694.	28.9	802
6	Long-Distance Growth and Connectivity of Neural Stem Cells after Severe Spinal Cord Injury. Cell, 2012, 150, 1264-1273.	28.9	760
7	The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature, 1999, 400, 169-173.	27.8	618
8	NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nature Neuroscience, 2012, 15, 703-712.	14.8	392
9	Lack of Enhanced Spinal Regeneration in Nogo-Deficient Mice. Neuron, 2003, 38, 213-224.	8.1	347
10	mPer1 and mPer2 Are Essential for Normal Resetting of the Circadian Clock. Journal of Biological Rhythms, 2001, 16, 100-104.	2.6	337
11	Tumour susceptibility and spontaneous mutation in mice deficient in Mlh1, Pms1 and Pms2 DMA mismatch repair. Nature Genetics, 1998, 18, 276-279.	21.4	332
12	Assessing Spinal Axon Regeneration and Sprouting in Nogo-, MAG-, and OMgp-Deficient Mice. Neuron, 2010, 66, 663-670.	8.1	281
13	Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1205-1210.	7.1	251
14	The neurite outgrowth inhibitor Nogo A is involved in autoimmune-mediated demyelination. Nature Neuroscience, 2004, 7, 736-744.	14.8	216
15	False resurrections: Distinguishing regenerated from spared axons in the injured central nervous system. Journal of Comparative Neurology, 2003, 459, 1-8.	1.6	204
16	Neurite outgrowth inhibitor Nogo-A establishes spatial segregation and extent of oligodendrocyte myelination. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1299-1304.	7.1	196
17	Engineering Mouse Chromosomes with Cre- loxP : Range, Efficiency, and Somatic Applications. Molecular and Cellular Biology, 2000, 20, 648-655.	2.3	182
18	Injured adult neurons regress to an embryonic transcriptional growth state. Nature, 2020, 581, 77-82.	27.8	154

BINHAI ZHENG

#	Article	IF	CITATIONS
19	Myelin-associated inhibitors in axonal growth after CNS injury. Current Opinion in Neurobiology, 2014, 27, 31-38.	4.2	153
20	Engineering a mouse balancer chromosome. Nature Genetics, 1999, 22, 375-378.	21.4	145
21	Stable in vivo imaging of densely populated glia, axons and blood vessels in the mouse spinal cord using two-photon microscopy. Journal of Neuroscience Methods, 2008, 169, 1-7.	2.5	134
22	Evidence for an Age-Dependent Decline in Axon Regeneration in the Adult Mammalian Central Nervous System. Cell Reports, 2016, 15, 238-246.	6.4	117
23	Fibrinogen inhibits neurite outgrowth via β3 integrin-mediated phosphorylation of the EGF receptor. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11814-11819.	7.1	103
24	Homeostatic sleep regulation is preserved in mPer1 and mPer2 mutant mice. European Journal of Neuroscience, 2002, 16, 1099-1106.	2.6	98
25	Effects of PTEN and Nogo Codeletion on Corticospinal Axon Sprouting and Regeneration in Mice. Journal of Neuroscience, 2015, 35, 6413-6428.	3.6	95
26	The dorsolateral corticospinal tract in mice: An alternative route for corticospinal input to caudal segments following dorsal column lesions. Journal of Comparative Neurology, 2004, 472, 463-477.	1.6	93
27	White matter inhibitors in CNS axon regeneration failure. Experimental Neurology, 2008, 209, 302-312.	4.1	93
28	Regenerative Growth of Corticospinal Tract Axons via the Ventral Column after Spinal Cord Injury in Mice. Journal of Neuroscience, 2008, 28, 6836-6847.	3.6	79
29	Navigating their way to the clinic: Emerging roles for axon guidance molecules in neurological disorders and injury. Developmental Neurobiology, 2007, 67, 1216-1231.	3.0	74
30	Gene Targeting in a HUES Line of Human Embryonic Stem Cells Via Electroporation. Stem Cells, 2009, 27, 1496-1506.	3.2	74
31	Role of myelin-associated inhibitors in axonal repair after spinal cord injury. Experimental Neurology, 2012, 235, 33-42.	4.1	73
32	U1 snRNA is cleaved by RNase III and processed through an Sm site-dependent pathway. Nucleic Acids Research, 1999, 27, 587-595.	14.5	71
33	Reassessment of Corticospinal Tract Regeneration in Nogo-Deficient Mice. Journal of Neuroscience, 2009, 29, 8649-8654.	3.6	71
34	Combined Genetic Attenuation of Myelin and Semaphorin-Mediated Growth Inhibition Is Insufficient to Promote Serotonergic Axon Regeneration. Journal of Neuroscience, 2010, 30, 10899-10904.	3.6	69
35	A Surviving Intact Branch Stabilizes Remaining Axon Architecture after Injury as Revealed by InÂVivo Imaging in the Mouse Spinal Cord. Neuron, 2015, 86, 947-954.	8.1	62
36	Immunity to the Extracellular Domain of Nogo-A Modulates Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2004, 173, 6981-6992.	0.8	60

BINHAI ZHENG

#	Article	IF	CITATIONS
37	Anatomical Coupling of Sensory and Motor Nerve Trajectory via Axon Tracking. Neuron, 2011, 71, 263-277.	8.1	53
38	Response to: Kim etÂal., "Axon Regeneration in Young Adult Mice Lacking Nogo-A/B.―Neuron 38, 187–199 Neuron, 2007, 54, 191-195.	^{9.} 8.1	51
39	Disruption of an imprinted gene cluster by a targeted chromosomal translocation in mice. Nature Genetics, 2001, 29, 78-82.	21.4	47
40	Genetic mouse models for studying inhibitors of spinal axon regeneration. Trends in Neurosciences, 2006, 29, 640-646.	8.6	47
41	EphA4 deficient mice maintain astroglial–fibrotic scar formation after spinal cord injury. Experimental Neurology, 2010, 223, 582-598.	4.1	43
42	Axon plasticity in the mammalian central nervous system after injury. Trends in Neurosciences, 2014, 37, 583-593.	8.6	43
43	The age factor in axonal repair after spinal cord injury: A focus on neuron-intrinsic mechanisms. Neuroscience Letters, 2017, 652, 41-49.	2.1	42
44	Genetic Evidence for a Contribution of EphA:EphrinA Reverse Signaling to Motor Axon Guidance. Journal of Neuroscience, 2012, 32, 5209-5215.	3.6	38
45	Leucine Zipper-Bearing Kinase Is a Critical Regulator of Astrocyte Reactivity in the Adult Mammalian CNS. Cell Reports, 2018, 22, 3587-3597.	6.4	37
46	Neural Stem Cell Dissemination after Grafting to CNS Injury Sites. Cell, 2014, 156, 388-389.	28.9	35
47	Leucine Zipper-bearing Kinase promotes axon growth in mammalian central nervous system neurons. Scientific Reports, 2016, 6, 31482.	3.3	32
48	Blockade of IL-17 signaling reverses alcohol-induced liver injury and excessive alcohol drinking in mice. JCI Insight, 2020, 5, .	5.0	29
49	Developmental Expression of the Oligodendrocyte Myelin Glycoprotein in the Mouse Telencephalon. Cerebral Cortex, 2010, 20, 1769-1779.	2.9	28
50	Adult rat myelin enhances axonal outgrowth from neural stem cells. Science Translational Medicine, 2018, 10, .	12.4	28
51	Multitasking: Dual Leucine Zipper–Bearing Kinases in Neuronal Development and Stress Management. Annual Review of Cell and Developmental Biology, 2019, 35, 501-521.	9.4	25
52	<i>In Vivo</i> Imaging of CNS Injury and Disease. Journal of Neuroscience, 2017, 37, 10808-10816.	3.6	24
53	Generation of an <i>OMgp</i> allelic series in mice. Genesis, 2009, 47, 751-756.	1.6	19
54	Generation of an <i>EphA4</i> conditional allele in mice. Genesis, 2010, 48, 101-105.	1.6	19

BINHAI ZHENG

#	Article	IF	CITATIONS
55	Visual Genotyping of a Coat Color Tagged p53 Mutant Mouse Line. Cancer Biology and Therapy, 2002, 1, 433-435.	3.4	18
56	Transient Demyelination Increases the Efficiency of Retrograde AAV Transduction. Molecular Therapy, 2010, 18, 1496-1500.	8.2	17
57	Oligodendrocytic but not neuronal Nogo restricts corticospinal axon sprouting after CNS injury. Experimental Neurology, 2018, 309, 32-43.	4.1	15
58	Understanding the axonal response to injury by imaging in the mouse spinal cord: A tale of two branches. Experimental Neurology, 2019, 318, 277-285.	4.1	15
59	Schwann Cell Expressed Nogo-B Modulates Axonal Branching of Adult Sensory Neurons Through the Nogo-B Receptor NgBR. Frontiers in Cellular Neuroscience, 2015, 9, 454.	3.7	14
60	A Critical Role for DLK and LZK in Axonal Repair in the Mammalian Spinal Cord. Journal of Neuroscience, 2022, 42, 3716-3732.	3.6	14
61	Axon regeneration after spinal cord injury: insight from genetically modified mouse models. Restorative Neurology and Neuroscience, 2008, 26, 175-82.	0.7	11
62	Extrinsic inhibitors in axon sprouting and functional recovery after spinal cord injury. Neural Regeneration Research, 2014, 9, 460.	3.0	10
63	Activation of MAP3K DLK and LZK in Purkinje cells causes rapid and slow degeneration depending on signaling strength. ELife, 2021, 10, .	6.0	8
64	Synaptic Suppression of Axon Regeneration. Neuron, 2016, 92, 267-269.	8.1	7
65	To Scar or Not to Scar. Trends in Molecular Medicine, 2018, 24, 522-524.	6.7	7
66	Myelin-Associated Inhibitors in Axonal Growth after Central Nervous System Injury. , 2015, , 153-170.		1
67	Editorial for "In vivo spinal cord imaging in health, injury and disease― Experimental Neurology, 2019, 322, 113038.	4.1	0