Paula P Gonçalves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/905119/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of lysine acetylsalicylate on aluminium accumulation and (Na+/K+)ATPase activity in rat brain cortex synaptosomes after aluminium ingestion. Toxicology Letters, 2015, 232, 167-174.	0.8	11
2	Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels and cAMP-Dependent Modulation of Exocytosis in Cultured Rat Lactotrophs. Journal of Neuroscience, 2014, 34, 15638-15647.	3.6	20
3	Differences in the expression pattern of HCN isoforms among mammalian tissues: sources and implications. Molecular Biology Reports, 2014, 41, 297-307.	2.3	22
4	Alteration of aluminium inhibition of synaptosomal (Na+/K+)ATPase by colestipol administration. Journal of Inorganic Biochemistry, 2013, 128, 208-214.	3.5	7
5	Peptide Hormone Release Monitored From Single Vesicles in "Membrane Lawns―of Differentiated Male Pituitary Cells: SNAREs and Fusion Pore Widening. Endocrinology, 2013, 154, 1235-1246.	2.8	7
6	cAMP-Mediated Stabilization of Fusion Pores in Cultured Rat Pituitary Lactotrophs. Journal of Neuroscience, 2013, 33, 8068-8078.	3.6	33
7	Synaptotagmin 1 is required for vesicular Ca ²⁺ /H ⁺ â€antiport activity. Journal of Neurochemistry, 2013, 126, 37-46.	3.9	8
8	Aluminium-induced changes of fusion pore properties attenuate prolactin secretion in rat pituitary lactotrophs. Neuroscience, 2012, 201, 57-66.	2.3	12
9	Synaptic vesicles control the time course of neurotransmitter secretion via a Ca ²⁺ /H ⁺ antiport. Journal of Physiology, 2011, 589, 149-167.	2.9	15
10	Automated high-throughput screening of carbon nanotube-based bio-nanocomposites for bone cement applications. Pure and Applied Chemistry, 2011, 83, 2063-2069.	1.9	1
11	Life and death in aluminium-exposed cultures of rat lactotrophs studied by flow cytometry. Cell Biology and Toxicology, 2010, 26, 341-353.	5.3	3
12	Integrated biomimetic carbon nanotube composites for in vivo systems. Nanoscale, 2010, 2, 2855.	5.6	35
13	Exocytosis, Mediatophore, and Vesicular Ca ²⁺ /H ⁺ Antiport in Rapid Neurotransmission. Annals of the New York Academy of Sciences, 2009, 1152, 100-112.	3.8	24
14	Biotoxicity study of bone cement based on a functionalised multi-walled carbon nanotube-reinforced PMMA/HAp nanocomposite. International Journal of Nano and Biomaterials, 2009, 2, 442.	0.1	5
15	Acetylcholine Release and Choline Uptake by Cuttlefish (<i>Sepia officinalis</i>) Optic Lobe Synaptosomes. Biological Bulletin, 2008, 214, 1-5.	1.8	3
16	Prolactin Secretion Sites Contain Syntaxin-1 and Differ from Ganglioside Monosialic Acid Rafts in Rat Lactotrophs. Endocrinology, 2008, 149, 4948-4957.	2.8	21
17	Comparative effects of aluminum and ouabain on synaptosomal choline uptake, acetylcholine release and (Na+/K+)ATPase. Toxicology, 2007, 236, 158-177.	4.2	28
18	Does neurotransmission impairment accompany aluminium neurotoxicity?. Journal of Inorganic Biochemistry, 2007, 101, 1291-1338.	3.5	45

Paula P Gonçalves

#	Article	IF	CITATIONS
19	Vesicular Calcium Transport Shapes Rapid Acetylcholine Secretion. Journal of Molecular Neuroscience, 2006, 30, 41-44.	2.3	1
20	Effect of Chronic Exposure to Aluminium on Isoform Expression and Activity of Rat (Na+/K+)ATPase. Toxicological Sciences, 2005, 88, 485-494.	3.1	39
21	Aluminium-induced impairment of Ca2+ modulatory action on GABA transport in brain cortex nerve terminals. Journal of Inorganic Biochemistry, 2003, 97, 132-142.	3.5	35
22	The inhibitory effect of aluminium on the (Na+/K+)ATPase activity of rat brain cortex synaptosomes. Journal of Inorganic Biochemistry, 2003, 97, 143-150.	3.5	26
23	Aluminum accumulation and membrane fluidity alteration in synaptosomes isolated from rat brain cortex following aluminum ingestion: effect of cholesterol. Neuroscience Research, 2002, 44, 181-193.	1.9	42
24	Ca2+ sensitivity of synaptic vesicle dopamine, gamma-aminobutyric acid, and glutamate transport systems. Neurochemical Research, 2001, 26, 75-81.	3.3	8
25	Ca2+ regulation of the carrier-mediated γ-aminobutyric acid release from isolated synaptic plasma membrane vesicles. Neuroscience Research, 2000, 38, 385-395.	1.9	12
26	Distinction between Ca2+ pump and Ca2+/H+ antiport activities in synaptic vesicles of sheep brain cortex. Neurochemistry International, 2000, 37, 387-396.	3.8	23
27	Methods for analysis of Ca2+/H+ antiport activity in synaptic vesicles isolated from sheep brain cortex. Brain Research Protocols, 2000, 5, 102-108.	1.6	9
28	Regulation of the Î ³ -aminobutyric acid transporter activity by protein phosphatases in synaptic plasma membranes. Neuroscience Research, 1999, 33, 41-47.	1.9	11
29	Ionic selectivity of the Ca2+/H+ antiport in synaptic vesicles of sheep brain cortex. Molecular Brain Research, 1999, 67, 283-291.	2.3	26
30	Synaptic vesicle Ca2+/H+ antiport: dependence on the proton electrochemical gradient. Molecular Brain Research, 1999, 71, 178-184.	2.3	27
31	Ca2+-H+ antiport activity in synaptic vesicles isolated from sheep brain cortex. Neuroscience Letters, 1998, 247, 87-90.	2.1	29
32	Membrane potential manipulation in synaptic plasma membrane vesicles for studying neurotransmitter uptake and release. Brain Research Protocols, 1997, 1, 1-12.	1.6	3
33	Regulation of [γ-3H]aminobutyric acid transport by Ca2+ in isolated synaptic plasma membrane vesicles. Molecular Brain Research, 1997, 51, 106-114.	2.3	9
34	Characterization of the carrier-mediated [3H]GABA release from isolated synaptic plasma membrane vesicles. Neurochemical Research, 1995, 20, 177-186.	3.3	5
35	Dual role of K+ and Na+ on the transport of [3H]-Î ³ -aminobutyric acid by synaptic plasma membrane vesicles. Molecular Brain Research, 1995, 32, 161-165.	2.3	4
36	Effect of anions on the uptake and release of γ-aminobutyric acid by isolated synaptic plasma membranes. Neurochemistry International, 1994, 25, 483-492.	3.8	8

#	Article	IF	CITATIONS
37	Release of γ-[3H]aminobutyric acid from synaptosomes: effect of external cations and of ouabain. Brain Research, 1991, 547, 135-139.	2.2	22
38	lonic requirements for transport and release of [3H]GABA by synaptic plasma membrane vesicles. Neurochemistry International, 1990, 17, 401-413.	3.8	9
39	Compartmentation and release of exogenous GABA in sheep brain synaptosomes. Neurochemical Research, 1987, 12, 297-304.	3.3	20