Parameshwaran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9051106/publications.pdf Version: 2024-02-01

ΔΑΔΑΜΕςΗΝΛΑΔΑΝ

#	Article	IF	CITATIONS
1	Experimental investigation on convective heat transfer and rheological characteristics of Cu–TiO2 hybrid nanofluids. Experimental Thermal and Fluid Science, 2014, 52, 104-115.	2.7	313
2	Sustainable thermal energy storage technologies for buildings: A review. Renewable and Sustainable Energy Reviews, 2012, 16, 2394-2433.	16.4	254
3	PCM-mortar based construction materials for energy efficient buildings: A review on research trends. Energy and Buildings, 2018, 158, 95-122.	6.7	148
4	Study on thermal properties of organic ester phase-change material embedded with silver nanoparticles. Journal of Thermal Analysis and Calorimetry, 2013, 114, 845-858.	3.6	123
5	Analytical and experimental investigations of nanoparticles embedded phase change materials for cooling application in modern buildings. Renewable Energy, 2012, 39, 375-387.	8.9	107
6	Preparation, thermal and rheological properties of hybrid nanocomposite phase change material for thermal energy storage. Applied Energy, 2014, 115, 320-330.	10.1	98
7	Energy conservative air conditioning system using silver nano-based PCM thermal storage for modern buildings. Energy and Buildings, 2014, 69, 202-212.	6.7	77
8	Energy efficient PCM-based variable air volume air conditioning system for modern buildings. Energy and Buildings, 2010, 42, 1353-1360.	6.7	72
9	Green synthesis of silver nanoparticles using Beta vulgaris: Role of process conditions on size distribution and surface structure. Materials Chemistry and Physics, 2013, 140, 135-147.	4.0	50
10	Energy conservative building air conditioning system controlled and optimized using fuzzy-genetic algorithm. Energy and Buildings, 2010, 42, 745-762.	6.7	46
11	Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings. Energy, 2013, 59, 194-214.	8.8	45
12	Experimental and numerical investigation of phase change materials with finned encapsulation for energy-efficient buildings. Journal of Building Performance Simulation, 2010, 3, 245-254.	2.0	42
13	Facile synthesis of microencapsulated 1-dodecanol/melamine-formaldehyde phase change material using in-situ polymerization for thermal energy storage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125698.	4.7	38
14	Microencapsulated phase change material suspensions for cool thermal energy storage. Materials Chemistry and Physics, 2020, 242, 122519.	4.0	32
15	Study on thermal storage properties of hybrid nanocomposite-dibasic ester as phase change material. Thermochimica Acta, 2013, 573, 106-120.	2.7	29
16	Performance evaluation of a combined variable refrigerant volume and cool thermal energy storage system for air conditioning applications. International Journal of Refrigeration, 2017, 76, 271-295.	3.4	29
17	Thermal conductivity prediction of titania-water nanofluid: A case study using different machine learning algorithms. Case Studies in Thermal Engineering, 2022, 30, 101658.	5.7	27
18	Preparation and characterization of hybrid nanocomposite embedded organic methyl ester as phase change material. Solar Energy Materials and Solar Cells, 2017, 171, 148-160.	6.2	23

PARAMESHWARAN

#	Article	IF	CITATIONS
19	Fluid-structure Interactions and Flow Induced Vibrations: A Review. Procedia Engineering, 2016, 144, 1286-1293.	1.2	19
20	Microencapsulated phase change materials as slurries for thermal energy storage: A review. Materials Today: Proceedings, 2021, 44, 1960-1963.	1.8	18
21	Experimental Studies on Convective Heat Transfer and Pressure Drop Characteristics of Metal and Metal Oxide Nanofluids Under Turbulent Flow Regime. Heat Transfer Engineering, 2016, 37, 422-434.	1.9	17
22	Role of polysiloxanes in the synthesis of aligned porous silicon oxycarbide ceramics. Ceramics International, 2019, 45, 8150-8156.	4.8	16
23	Study on thermal energy storage properties of organic phase change material for waste heat recovery applications. Materials Today: Proceedings, 2018, 5, 16840-16848.	1.8	15
24	Effect of aggregation on thermal conductivity and heat transfer in hybrid nanocomposite phase change colloidal suspensions. Applied Physics Letters, 2013, 103, 193113.	3.3	14
25	Microencapsulated bio-based phase change material-micro concrete composite for thermal energy storage. Journal of Building Engineering, 2021, 39, 102247.	3.4	13
26	Applications of Thermal Analysis to the Study of Phase-Change Materials. Handbook of Thermal Analysis and Calorimetry, 2018, 6, 519-572.	1.6	11
27	Experimental analysis of hybrid nanocomposite-phase change material embedded cement mortar for thermal energy storage. Journal of Building Engineering, 2020, 30, 101297.	3.4	11
28	Study on thermal energy storage properties of bio-based n-dodecanoic acid/fly ash as a novel shape-stabilized phase change material. Case Studies in Thermal Engineering, 2022, 30, 101707.	5.7	11
29	Energy efficient pumpable cement concrete with nanomaterials embedded PCM for passive cooling application in buildings. Materials Today: Proceedings, 2020, 28, 1054-1063.	1.8	10
30	Thermal Energy Storage Systems Design. , 2014, , 237-245.		9
31	Cryogenic conditioning of microencapsulated phase change material for thermal energy storage. Scientific Reports, 2020, 10, 18353.	3.3	9
32	Applications of Thermal Energy Storage Systems. , 2014, , 359-366.		7
33	Thermal Energy Storage Technologies. , 2014, , 57-64.		7
34	Thermal stability evaluation of selected zeolites for sustainable thermochemical energy storage. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-14.	2.3	6
35	Preparation and characterization of microencapsulated organic phase change material for cool thermal energy storage applications. Materials Today: Proceedings, 2021, 48, 639-639.	1.8	6
36	Nanomaterial-embedded phase-change materials (PCMs) for reducing building cooling needs. , 2015, , 401-439.		5

3

PARAMESHWARAN

#	Article	IF	CITATIONS
37	Micro/nanoencapsulation of dimethyl adipate with melamine formaldehyde shell as phase change material slurries for cool thermal energy storage. Chemical Thermodynamics and Thermal Analysis, 2022, 6, 100037.	1.5	5
38	Bio-based hexadecanol impregnated fly-ash aggregate as novel shape stabilized phase change material for solar thermal energy storage. Materials Today: Proceedings, 2022, 56, 1317-1326.	1.8	5
39	Experimental Evaluation of Combined DCV and Economizer Cycle using a FLC Variable Air Volume (VAV) System. International Journal of Ventilation, 2007, 5, 393-403.	0.4	3
40	Energy and Energy Management. , 2014, , 1-19.		3
41	Nanotechnology in Thermal Energy Storage. , 2014, , 163-202.		3
42	Preparation, thermal and structural properties of n-octadecane/melamine formaldehyde nanocapsules embedded cement mortar for energy storage application in buildings. Materials Today: Proceedings, 2022, 56, 1424-1431.	1.8	3
43	Experimental Analysis of a Genetic-Fuzzy Inverter DX VAV A/C System for Automatically Ventilated Buildings. International Journal of Ventilation, 2007, 6, 219-234.	0.4	2
44	An Energy Efficient Air Conditioning System using Displacement Ventilation and Chilled Ceiling for Modern Office Buildings. International Journal of Ventilation, 2010, 9, 25-44.	0.4	2
45	Study on thermal storage properties of microencapsulated organic ester as phase change material for cooling application. International Journal of Environmental Analytical Chemistry, 2019, , 1-10.	3.3	2
46	Bio-based phase-change materials. , 2020, , 203-242.		2
47	Thermal Energy Storage Technologies. , 2013, , 483-536.		2
48	Thermal conductivity enhancement of magnetic nanofluids for energy applications. Materials Today: Proceedings, 2023, 72, 67-73.	1.8	2
49	Assessment of Thermal Energy Storage Systems. , 2014, , 279-310.		1
50	Sustainable Thermal Energy Storage. , 2014, , 203-235.		1
51	Latent Thermal Energy Storage. , 2014, , 83-126.		1
52	Nanomaterial-Based PCM Composites for Thermal Energy Storage in Buildings. , 2016, , 215-243.		1
53	Sustainable and open sorption system for lowâ€ŧemperature heat storage applications. International Journal of Energy Research, 2022, 46, 20004-20020.	4.5	1
54	Microcapsules of n-dodecanoic acid/melamine-formaldehyde with enhanced thermal energy storage capability for solar applications. Journal of Science: Advanced Materials and Devices, 2022, , 100462.	3.1	1

#	Article	IF	CITATIONS
55	Experimental Study on PCM-Based External Wall Cladding for Energy Efficient Buildings. Lecture Notes in Mechanical Engineering, 2020, , 513-526.	0.4	0
56	Dimethyl Adipate-Based Microencapsulated Phase Change Material with Silica Shell for Cool Thermal Energy Storage. Lecture Notes in Mechanical Engineering, 2021, , 225-234.	0.4	0