
Talha Erdem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9050764/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantum dot integrated LEDs using photonic and excitonic color conversion. Nano Today, 2011, 6, 632-647.	6.2	245
2	A photometric investigation of ultra-efficient LEDs with high color rendering index and high luminous efficacy employing nanocrystal quantum dot luminophores. Optics Express, 2010, 18, 340.	1.7	141
3	Color science of nanocrystal quantum dots for lighting and displays. Nanophotonics, 2013, 2, 57-81.	2.9	140
4	Nearâ€Unity Emitting Copperâ€Doped Colloidal Semiconductor Quantum Wells for Luminescent Solar Concentrators. Advanced Materials, 2017, 29, 1700821.	11.1	133
5	Large-Area (over 50 cm × 50 cm) Freestanding Films of Colloidal InP/ZnS Quantum Dots. Nano Letters, 2012, 12, 3986-3993.	4.5	104
6	Warm-white light-emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering. Optics Letters, 2010, 35, 3372.	1.7	77
7	Semiconductor nanocrystals as rare-earth alternatives. Nature Photonics, 2011, 5, 126-126.	15.6	74
8	Colloidal nanocrystals for quality lighting and displays: milestones and recent developments. Nanophotonics, 2016, 5, 74-95.	2.9	70
9	Tunable White-Light-Emitting Mn-Doped ZnSe Nanocrystals. ACS Applied Materials & Interfaces, 2014, 6, 3654-3660.	4.0	67
10	White-Emitting Conjugated Polymer Nanoparticles with Cross-Linked Shell for Mechanical Stability and Controllable Photometric Properties in Color-Conversion LED Applications. ACS Nano, 2011, 5, 2483-2492.	7.3	57
11	Ultrathin Highly Luminescent Twoâ€Monolayer Colloidal CdSe Nanoplatelets. Advanced Functional Materials, 2019, 29, 1901028.	7.8	56
12	Continuously Tunable Emission in Inverted Typeâ€I CdS/CdSe Core/Crown Semiconductor Nanoplatelets. Advanced Functional Materials, 2015, 25, 4282-4289.	7.8	52
13	Implementation of High-Quality Warm-White Light-Emitting Diodes by a Model-Experimental Feedback Approach Using Quantum Dot–Salt Mixed Crystals. ACS Applied Materials & Interfaces, 2015, 7, 23364-23371.	4.0	48
14	CdSe/CdSe _{1–<i>x</i>} Te _{<i>x</i>} Core/Crown Heteronanoplatelets: Tuning the Excitonic Properties without Changing the Thickness. Journal of Physical Chemistry C, 2017, 121, 4650-4658.	1.5	45
15	Multiplexed patterning of cesium lead halide perovskite nanocrystals by additive jet printing for efficient white light generation. Chemical Engineering Journal, 2020, 380, 122493.	6.6	41
16	Computational study of power conversion and luminous efficiency performance for semiconductor quantum dot nanophosphors on light-emitting diodes. Optics Express, 2012, 20, 3275.	1.7	34
17	High scotopic/photopic ratio white-light-emitting diodes integrated with semiconductor nanophosphors of colloidal quantum dots. Optics Letters, 2011, 36, 1893.	1.7	33
18	Manganese Doped Fluorescent Paramagnetic Nanocrystals for Dualâ€Modal Imaging. Small, 2014, 10, 4961-4966.	5.2	31

Talha Erdem

#	Article	IF	CITATIONS
19	Comparative study of field-dependent carrier dynamics and emission kinetics of InGaN/GaN light-emitting diodes grown on (112Â ⁻ 2) semipolar versus (0001) polar planes. Applied Physics Letters, 2014, 104, .	1.5	29
20	Colloidal Nanocrystals Embedded in Macrocrystals: Methods and Applications. Journal of Physical Chemistry Letters, 2016, 7, 4117-4123.	2.1	28
21	Optical detection of microplastics in water. Environmental Science and Pollution Research, 2021, 28, 63860-63866.	2.7	22
22	Stable and efficient colour enrichment powders of nonpolar nanocrystals in LiCl. Nanoscale, 2015, 7, 17611-17616.	2.8	17
23	Macrocrystals of Colloidal Quantum Dots in Anthracene: Exciton Transfer and Polarized Emission. Journal of Physical Chemistry Letters, 2015, 6, 1767-1772.	2.1	17
24	High-Stability, High-Efficiency Organic Monoliths Made of Oligomer Nanoparticles Wrapped in Organic Matrix. ACS Nano, 2016, 10, 5333-5339.	7.3	16
25	A simple approach to prepare self-assembled, nacre-inspired clay/polymer nanocomposites. Soft Matter, 2020, 16, 5497-5505.	1.2	16
26	Sweet plasmonics: Sucrose macrocrystals of metal nanoparticles. Nano Research, 2015, 8, 860-869.	5.8	15
27	Energy-saving quality road lighting with colloidal quantum dot nanophosphors. Nanophotonics, 2014, 3, 373-381.	2.9	14
28	Morphology-Dependent Energy Transfer of Polyfluorene Nanoparticles Decorating InGaN/GaN Quantum-Well Nanopillars. Journal of Physical Chemistry C, 2013, 117, 18613-18619.	1.5	10
29	Excitonic improvement of colloidal nanocrystals in salt powder matrix for quality lighting and color enrichment. Optics Express, 2016, 24, A74.	1.7	8
30	Brightly Luminescent Cu-Zn-In-S/ZnS Core/Shell Quantum Dots in Salt Matrices. Zeitschrift Fur Physikalische Chemie, 2018, 233, 23-40.	1.4	8
31	Warm-white light-emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering: reply to comment. Optics Letters, 2011, 36, 2852.	1.7	7
32	Construction of multi-layered white emitting organic nanoparticles by clicking polymers. Journal of Materials Chemistry C, 2015, 3, 10277-10284.	2.7	7
33	Highly Luminescent CB[7]â€Based Conjugated Polyrotaxanes Embedded into Crystalline Matrices. Macromolecular Materials and Engineering, 2017, 302, 1700290.	1.7	5
34	Transparent Films Made of Highly Scattering Particles. Langmuir, 2020, 36, 911-918.	1.6	4
35	Power conversion and luminous efficiency performance of nanophosphor quantum dots on color-conversion LEDs for high-quality general lighting. , 2012, , .		3
36	Highly polarized light emission by isotropic quantum dots integrated with magnetically aligned segmented nanowires. Applied Physics Letters, 2014, 105, 141116.	1.5	2

Talha Erdem

#	Article	IF	CITATIONS
37	Color Science and Photometry for Lighting with LEDs and Semiconductor Nanocrystals. SpringerBriefs in Applied Sciences and Technology, 2019, , .	0.2	2
38	Tuning optical properties of self-assembled nanoparticle network with external optical excitation. Journal of Applied Physics, 2021, 129, .	1.1	2
39	Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1457-1468.	1.4	1
40	Osmotic-Pressure-Induced Nematic Ordering in Suspensions of Laponite and Carboxy Methyl Cellulose. Journal of Physical Chemistry B, 2020, 124, 9475-9481.	1.2	1
41	Color Enrichment Solids of Spectrally Pure Colloidal Quantum Wells for Wide Color Span in Displays. Advanced Optical Materials, 2022, 10, .	3.6	1
42	Non-radiative energy-transfer-driven quantum dot LEDs. , 2010, , .		0
43	Superior warm-white light-emitting diodes integrated with quantum dot nanophosphors for high luminous efficacy and color rendering. , 2011, , .		0
44	Large-area (> 50 cm × 50 cm), freestanding, flexible, optical membranes of Cd-free nanocrystal quantum dots. , 2012, , .		0
45	Exciton transfer and polarized emission in colloidal quantum dot - anthracene crystals. , 2015, , .		0
46	High-efficiency high-quality street lighting with colloidal quantum dot nanophosphors. , 2015, , .		0
47	Metrics for Light Source Design. SpringerBriefs in Applied Sciences and Technology, 2019, , 17-26.	0.2	0
48	Light Stimulus and Human Eye. SpringerBriefs in Applied Sciences and Technology, 2019, , 5-9.	0.2	0
49	How to Design Quality Light Sources With Discrete Color Components. SpringerBriefs in Applied Sciences and Technology, 2019, , 35-43.	0.2	0
50	Future Outlook. SpringerBriefs in Applied Sciences and Technology, 2019, , 45-47.	0.2	0
51	Colorimetry for LED Lighting. SpringerBriefs in Applied Sciences and Technology, 2019, , 11-16.	0.2	0