Daniel L Childers

List of Publications by Citations

Source: https://exaly.com/author-pdf/9050156/daniel-l-childers-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

6,613 80 41 102 h-index g-index citations papers 7,236 5.48 105 3.7 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
102	The Identification, Conservation, and Management of Estuarine and Marine Nurseries for Fish and Invertebrates. <i>BioScience</i> , 2001 , 51, 633	5.7	1556
101	An integrated conceptual framework for long-term social@cological research. <i>Frontiers in Ecology and the Environment</i> , 2011 , 9, 351-357	5.5	386
100	Sustainability Challenges of Phosphorus and Food: Solutions from Closing the Human Phosphorus Cycle. <i>BioScience</i> , 2011 , 61, 117-124	5.7	333
99	Linking Ecology and Economics for Ecosystem Management. <i>BioScience</i> , 2006 , 56, 121	5.7	256
98	Phosphorus Biogeochemistry and the Impact of Phosphorus Enrichment: Why Is the Everglades so Unique?. <i>Ecosystems</i> , 2001 , 4, 603-624	3.9	225
97	An Ecology for Cities: A Transformational Nexus of Design and Ecology to Advance Climate Change Resilience and Urban Sustainability. <i>Sustainability</i> , 2015 , 7, 3774-3791	3.6	153
96	Ecological science and transformation to the sustainable city. <i>Cities</i> , 2013 , 32, S10-S20	5.6	149
95	Advancing urban sustainability theory and action: Challenges and opportunities. <i>Landscape and Urban Planning</i> , 2014 , 125, 320-328	7.7	145
94	Relating precipitation and water management to nutrient concentrations in the oligotrophic Opside-down Destuaries of the Florida Everglades. <i>Limnology and Oceanography</i> , 2006 , 51, 602-616	4.8	130
93	Evolution and future of urban ecological science: ecology in, of, and for the city. <i>Ecosystem Health and Sustainability</i> , 2016 , 2, e01229	3.7	125
92	Periphyton responses to eutrophication in the Florida Everglades: Cross-system patterns of structural and compositional change. <i>Limnology and Oceanography</i> , 2006 , 51, 617-630	4.8	115
91	The New Global Urban Realm: Complex, Connected, Diffuse, and Diverse Social-Ecological Systems. <i>Sustainability</i> , 2015 , 7, 5211-5240	3.6	106
90	Quantitative and Qualitative Aspects of Dissolved Organic Carbon Leached from Senescent Plants in an Oligotrophic Wetland. <i>Biogeochemistry</i> , 2006 , 78, 285-314	3.8	106
89	Temporally dependent C, N, and P dynamics associated with the decay of Rhizophora mangle L. leaf litter in oligotrophic mangrove wetlands of the Southern Everglades. <i>Aquatic Botany</i> , 2003 , 75, 199-215	1.8	105
88	Spatial and temporal patterns of aboveground net primary productivity (ANPP) along two freshwater-estuarine transects in the Florida Coastal Everglades. <i>Hydrobiologia</i> , 2006 , 569, 459-474	2.4	100
87	Urban phosphorus sustainability: Systemically incorporating social, ecological, and technological factors into phosphorus flow analysis. <i>Environmental Science and Policy</i> , 2015 , 47, 1-11	6.2	97
86	Decadal change in vegetation and soil phosphorus pattern across the Everglades landscape. <i>Journal of Environmental Quality</i> , 2003 , 32, 344-62	3.4	96

(2017-2005)

85	Cascading ecological effects of low-level phosphorus enrichment in the Florida everglades. <i>Journal of Environmental Quality</i> , 2005 , 34, 717-23	3.4	91
84	Maintaining tree islands in the Florida Everglades: nutrient redistribution is the key. <i>Frontiers in Ecology and the Environment</i> , 2005 , 3, 370-376	5.5	89
83	A conceptual model of ecological interactions in the mangrove estuaries of the Florida Everglades. <i>Wetlands</i> , 2005 , 25, 832-842	1.7	86
82	Phosphorus cycling and partitioning in an oligotrophic Everglades wetland ecosystem: a radioisotope tracing study. <i>Freshwater Biology</i> , 2003 , 48, 1993-2008	3.1	77
81	Controls on fish distribution and abundance in temporary wetlands. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2002 , 59, 1441-1450	2.4	72
80	Importance of Storm Events in Controlling Ecosystem Structure and Function in a Florida Gulf Coast Estuary. <i>Journal of Coastal Research</i> , 2004 , 204, 1198-1208	0.6	71
79	Seasonal plant water uptake patterns in the saline southeast Everglades ecotone. <i>Oecologia</i> , 2007 , 152, 607-16	2.9	64
78	Factors affecting spatial and temporal variability in material exchange between the Southern Everglades wetlands and Florida Bay (USA). <i>Estuarine, Coastal and Shelf Science</i> , 2003 , 57, 757-781	2.9	59
77	Stormwater Infrastructure Controls Runoff and Dissolved Material Export from Arid Urban Watersheds. <i>Ecosystems</i> , 2015 , 18, 62-75	3.9	58
76	The Role of the Everglades Mangrove Ecotone Region (EMER) in Regulating Nutrient Cycling and Wetland Productivity in South Florida. <i>Critical Reviews in Environmental Science and Technology</i> , 2011 , 41, 633-669	11.1	55
75	Responses of sawgrass and spikerush to variation in hydrologic drivers and salinity in Southern Everglades marshes. <i>Hydrobiologia</i> , 2006 , 569, 273-292	2.4	54
74	Subtidal advective water flux as a potentially important nutrient input to southeastern U.S.A. Saltmarsh estuaries. <i>Estuarine, Coastal and Shelf Science</i> , 1989 , 28, 417-431	2.9	53
73	Sources and transport of nitrogen in arid urban watersheds. <i>Environmental Science & Environmental Sci</i>	10.3	51
72	A synthesis of long-term research by the Florida Coastal Everglades LTER Program. <i>Hydrobiologia</i> , 2006 , 569, 531-544	2.4	51
71	Quantifying aboveground biomass and estimating net aboveground primary production for wetland macrophytes using a non-destructive phenometric technique. <i>Aquatic Botany</i> , 1998 , 62, 115-13	33 ^{1.8}	50
70	The contribution of leaching to the rapid release of nutrients and carbon in the early decay of wetland vegetation. <i>Hydrobiologia</i> , 2006 , 569, 87-97	2.4	50
69	Landscape Conservation in a Forested Wetland Watershed. <i>BioScience</i> , 1990 , 40, 588-600	5.7	48
68	Moving Towards a New Urban Systems Science. <i>Ecosystems</i> , 2017 , 20, 38-43	3.9	46

67	Short-term changes in phosphorus storage in an oligotrophic Everglades wetland ecosystem receiving experimental nutrient enrichment. <i>Biogeochemistry</i> , 2002 , 59, 239-267	3.8	45
66	Phosphorus in Phoenix: a budget and spatial representation of phosphorus in an urban ecosystem 2012 , 22, 705-21		44
65	A Conceptual Framework to Develop Long-Term Ecological Research and Management Objectives in the Wider Caribbean Region. <i>BioScience</i> , 2004 , 54, 843	5.7	43
64	Ecological effects of low-level phosphorus additions on two plant communities in a neotropical freshwater wetland ecosystem. <i>Oecologia</i> , 2004 , 141, 672-86	2.9	43
63	Wetland-water column exchanges of carbon, nitrogen, and phosphorus in a southern Everglades dwarf mangrove. <i>Estuaries and Coasts</i> , 2001 , 24, 610		43
62	Decadal Change in Vegetation and Soil Phosphorus Pattern across the Everglades Landscape 2003 , 32, 344		43
61	Phosphorus budgets in Everglades wetland ecosystems: the effects of hydrology and nutrient enrichment. Wetlands Ecology and Management, 2007, 15, 189-205	2.1	38
60	Heterogeneity of phosphorus distribution in a patterned landscape, the Florida Everglades. <i>Plant Ecology</i> , 2009 , 200, 83-90	1.7	37
59	Effects of hydrologic and water quality drivers on periphyton dynamics in the southern Everglades. <i>Hydrobiologia</i> , 2006 , 569, 223-235	2.4	37
58	Ecosystem structure, nutrient dynamics, and hydrologic relationships in tree islands of the southern Everglades, Florida, USA. <i>Forest Ecology and Management</i> , 2005 , 214, 11-27	3.9	35
57	Hydrologic measurements and implications for tree island formation within Everglades National Park. <i>Journal of Hydrology</i> , 2006 , 329, 606-619	6	35
56	Marsh-water column interactions in two Louisiana estuaries. I. Sediment dynamics. <i>Estuaries and Coasts</i> , 1990 , 13, 393		34
55	Marsh-water column interactions in two Louisiana estuaries. II. Nutrient dynamics. <i>Estuaries and Coasts</i> , 1990 , 13, 404		34
54	Studying, Teaching and Applying Sustainability Visions Using Systems Modeling. <i>Sustainability</i> , 2014 , 6, 4452-4469	3.6	33
53	Characteristics of surface-water flows in the ridge and slough landscape of Everglades National Park: implications for particulate transport. <i>Hydrobiologia</i> , 2006 , 569, 5-22	2.4	33
52	Controls on emergent macrophyte composition, abundance, and productivity in freshwater Everglades wetland communities. <i>Wetlands</i> , 1999 , 19, 262-275	1.7	33
51	A flow-through flume technique for quantifying nutrient and materials fluxes in microtidal estuaries. <i>Estuarine, Coastal and Shelf Science</i> , 1988 , 27, 483-494	2.9	30
50	Influence of agricultural upland habitat type on larval anuran assemblages in seasonally inundated wetlands. <i>Wetlands</i> , 2009 , 29, 294-301	1.7	29

(2007-2015)

Limits to adaptation to interacting global change risks among smallholder rice farmers in Northwest Costa Rica. <i>Global Environmental Change</i> , 2015 , 30, 101-112	10.1	28	
Using soil profiles of seeds and molecular markers as proxies for sawgrass and wet prairie slough vegetation in Shark Slough, Everglades National Park. <i>Hydrobiologia</i> , 2006 , 569, 475-492	2.4	27	
Urban Ecological Infrastructure: An inclusive concept for the non-built urban environment. <i>Elementa</i> , 2019 , 7,	3.6	27	
Patterns of Soil Bacteria and Canopy Community Structure Related to Tropical Peatland Development. <i>Wetlands</i> , 2012 , 32, 769-782	1.7	26	
A Dynamic Nutrient Budget of Subsystem Interactions in a Salt Marsh Estuary. <i>Estuarine, Coastal and Shelf Science</i> , 1993 , 36, 105-131	2.9	26	
Sustainability assessment of water governance alternatives: the case of Guanacaste Costa Rica. <i>Sustainability Science</i> , 2016 , 11, 231-247	6.4	23	
How the Second Law of Thermodynamics Has Informed Ecosystem Ecology through Its History. <i>BioScience</i> , 2016 , 66, 27-39	5.7	22	
Drivers of Decadal-Scale Change in Southern Everglades Wetland Macrophyte Communities of the Coastal Ecotone. <i>Wetlands</i> , 2014 , 34, 81-90	1.7	22	
Efficiency Through Proximity. <i>Journal of Industrial Ecology</i> , 2012 , 16, 914-927	7.2	21	
Hydroperiod and seasonal effects on fish decomposition in an oligotrophic Everglades marsh. <i>Wetlands</i> , 2004 , 24, 529-537	1.7	21	
Linking science and decision making to promote an ecology for the city: practices and opportunities. <i>Ecosystem Health and Sustainability</i> , 2016 , 2, e01239	3.7	20	
Hydrological Conditions Control P Loading and Aquatic Metabolism in an Oligotrophic, Subtropical Estuary. <i>Estuaries and Coasts</i> , 2012 , 35, 292-307	2.8	19	
Long-Term Ecological Research and Evolving Frameworks of Disturbance Ecology. <i>BioScience</i> , 2020 , 70, 141-156	5.7	18	
Simulation of periphyton phosphorus dynamics in Everglades National Park. <i>Ecological Modelling</i> , 2000 , 134, 103-115	3	18	
Litter decomposition promotes differential feedbacks in an oligotrophic southern Everglades wetland. <i>Plant Ecology</i> , 2009 , 200, 69-82	1.7	17	
Twenty More Years of Marsh and Estuarine Flux Studies: Revisiting Nixon (1980) 2002 , 391-423		17	
Assessment of Cumulative Impacts to Water Quality in a Forested Wetland Landscape. <i>Journal of Environmental Quality</i> , 1990 , 19, 455-464	3.4	17	
Estimating Aboveground Net Primary Production in Grassland- and Herbaceous-Dominated Ecosystems 2007 , 27-48		17	
	Northwest Costa Rica. Global Environmental Change, 2015, 30, 101-112 Using soil profiles of seeds and molecular markers as proxies for sawgrass and wet prairie slough vegetation in Shark Slough, Everglades National Park. Hydrobiologia, 2006, 569, 475-492 Urban Ecological Infrastructure: An inclusive concept for the non-built urban environment. Elementa, 2019, 7, Patterns of Soil Bacteria and Canopy Community Structure Related to Tropical Peatland Development. Wetlands, 2012, 32, 769-782 A Dynamic Nutrient Budget of Subsystem Interactions in a Salt Marsh Estuary. Estuarine, Coastal and Shelf Science, 1993, 36, 105-131 Sustainability assessment of water governance alternatives: the case of Guanacaste Costa Rica. Sustainability Science, 2016, 11, 231-247 How the Second Law of Thermodynamics Has Informed Ecosystem Ecology through Its History. BioScience, 2016, 66, 27-39 Drivers of Decadal-Scale Change in Southern Everglades Wetland Macrophyte Communities of the Coastal Ecotone. Wetlands, 2014, 34, 81-90 Efficiency Through Proximity. Journal of Industrial Ecology, 2012, 16, 914-927 Hydroperiod and seasonal effects on fish decomposition in an oligotrophic Everglades marsh. Wetlands, 2004, 24, 529-537 Linking science and decision making to promote an ecology for the city: practices and opportunities. Ecosystem Health and Sustainability, 2016, 2, e01239 Hydrological Conditions Control P Loading and Aquatic Metabolism in an Oligotrophic, Subtropical Estuary. Estuaries and Coasts, 2012, 35, 292-307 Long-Term Ecological Research and Evolving Frameworks of Disturbance Ecology. BioScience, 2020, 70, 141-156 Simulation of periphyton phosphorus dynamics in Everglades National Park. Ecological Modelling, 2000, 134, 103-115 Litter decomposition promotes differential feedbacks in an oligotrophic southern Everglades wetland. Plant Ecology, 2009, 200, 69-82 Twenty More Years of Marsh and Estuarine Flux Studies: Revisiting Nixon (1980) 2002, 391-423 Assessment of Cumulative Impacts to Water Quality in a Forested Wet	Using soil profiles of seeds and molecular markers as proxies for sawgrass and wet prairie slough vegetation in Shark Slough, Everglades National Park. Hydrobiologia, 2006, 569, 475-492 Urban Ecological Infrastructure: An inclusive concept for the non-built urban environment. Elemento, 2019, 7. Patterns of Soil Bacteria and Canopy Community Structure Related to Tropical Peatland Development. Wetlands, 2012, 32, 769-782 A Dynamic Nutrient Budget of Subsystem Interactions in a Salt Marsh Estuary. Estuarine, Coastal and Shelf Science, 1993, 36, 105-131 Sustainability assessment of water governance alternatives: the case of Guanacaste Costa Rica. Sustainability Science, 2016, 11, 231-247 How the Second Law of Thermodynamics Has Informed Ecosystem Ecology through Its History. BioScience, 2016, 66, 27-39 Drivers of Decadal-Scale Change in Southern Everglades Wetland Macrophyte Communities of the Coastal Ecotone. Wetlands, 2014, 34, 81-90 Efficiency Through Proximity. Journal of Industrial Ecology, 2012, 16, 914-927 7.2 Hydroperiod and seasonal effects on fish decomposition in an oligotrophic Everglades marsh. Wetlands, 2004, 24, 529-537 Linking science and decision making to promote an ecology for the city: practices and opportunities. Ecosystem Health and Sustainability, 2016, 2, e01239 Hydrological Conditions Control P Loading and Aquatic Metabolism in an Oligotrophic, Subtropical Estuary. Estuaries and Coasts, 2012, 35, 292-307 Long-Term Ecological Research and Evolving Frameworks of Disturbance Ecology. BioScience, 2020, 70, 141-156 Simulation of periphyton phosphorus dynamics in Everglades National Park. Ecological Modelling, 2000, 134, 103-115 Litter decomposition promotes differential feedbacks in an oligotrophic southern Everglades wetland. Plant Ecology, 2009, 200, 69-82 Twenty More Years of Marsh and Estuarine Flux Studies: Revisiting Nixon (1980) 2002, 391-423 Assessment of Cumulative Impacts to Water Quality in a Forested Wetland Landscape. Journal of Environmental Quality, 1990, 19, 455-4	Northwest Costa Rica. <i>Global Environmental Change</i> , 2015, 30, 101-112 Using soil profiles of seeds and molecular markers as proxies for sawgrass and wet prairie slough vegetation in Shark Slough, Everglades National Park. <i>Hydrobiologia</i> , 2006, 669, 475-492 Urban Ecological Infrastructure: An inclusive concept for the non-built urban environment. <i>Elementa</i> , 2019, 7, Patterns of Soil Bacteria and Canopy Community Structure Related to Tropical Peatland Development. <i>Wetlands</i> , 2012, 32, 769-782 A Dynamic Nutrient Budget of Subsystem Interactions in a Salt Marsh Estuary. <i>Estuarine</i> , <i>Coastal and Shelf Science</i> , 1993, 36, 105-131 Sustainability assessment of water governance alternatives: the case of Guanacaste Costa Rica. Sustainability Science, 2016, 11, 231-247 How the Second Law of Thermodynamics Has Informed Ecosystem Ecology through Its History. <i>BioScience</i> , 2016, 66, 27-39 Drivers of Decadal-Scale Change in Southern Everglades Wetland Macrophyte Communities of the Coastal Ecotone. <i>Wetlands</i> , 2014, 34, 81-90 Efficiency Through Proximity. <i>Journal of Industrial Ecology</i> , 2012, 16, 914-927 72 21 Hydroperiod and seasonal effects on fish decomposition in an oligotrophic Everglades marsh. <i>Wetlands</i> , 2004, 24, 529-537 Linking science and decision making to promote an ecology for the city: practices and opportunities. <i>Ecosystem Health and Sustainability</i> , 2016, 2, e01239 Hydrological Conditions Control P Loading and Aquatic Metabolism in an Oligotrophic, Subtropical Estuary. <i>Estuaries and Coasts</i> , 2012, 35, 292-307 Long-Term Ecological Research and Evolving Frameworks of Disturbance Ecology. <i>BioScience</i> , 2020, 70, 141-156 Simulation of periphyton phosphorus dynamics in Everglades National Park. <i>Ecological Modelling</i> , 2014, 103-115 Litter decomposition promotes differential feedbacks in an oligotrophic southern Everglades wetland. <i>Plant Ecology</i> , 2009, 200, 69-82 Twenty More Years of Marsh and Estuarine Flux Studies: Revisiting Nixon (1980) 2002, 391-423 17 Assessment of Cumulative Im

31	An in situ mesocosm method for quantifying nitrogen cycling rates in oligotrophic wetlands using 15N tracer techniques. <i>Wetlands</i> , 2008 , 28, 502-512	1.7	16
30	Aridland constructed treatment wetlands II: Plant mediation of surface hydrology enhances nitrogen removal. <i>Ecological Engineering</i> , 2016 , 97, 658-665	3.9	15
29	Soil microbial community composition is correlated to soil carbon processing along a boreal wetland formation gradient. <i>European Journal of Soil Biology</i> , 2017 , 82, 17-26	2.9	15
28	Relationships Between Hydrology and Soils Describe Vegetation Patterns in Seasonally Flooded Tree Islands of the Southern Everglades, Florida. <i>Plant and Soil</i> , 2006 , 279, 271-286	4.2	15
27	Seasonally varied controls of climate and phenophase on terrestrial carbon dynamics: modeling eco-climate system state using Dynamical Process Networks. <i>Landscape Ecology</i> , 2016 , 31, 165-180	4.3	14
26	Importance of water source in controlling leaf leaching losses in a dwarf red mangrove (Rhizophora mangle L.) wetland. <i>Estuarine, Coastal and Shelf Science</i> , 2007 , 71, 194-201	2.9	14
25	Demystifying governance and its role for transitions in urban social@cological systems. <i>Ecosphere</i> , 2016 , 7, e01564	3.1	14
24	Aridland constructed treatment wetlands I: Macrophyte productivity, community composition, and nitrogen uptake. <i>Ecological Engineering</i> , 2016 , 97, 649-657	3.9	13
23	Viewing the Urban Socio-ecological System Through a Sustainability Lens: Lessons and Prospects from the Central Arizona P hoenix LTER Programme 2013 , 217-246		13
22	Controls on herbaceous litter decomposition in the estuarine ecotones of the Florida Everglades. <i>Estuaries and Coasts</i> , 2006 , 29, 257-268	2.8	13
21	Biogeochemical Contributions of Tree Islands to Everglades Wetland Landscape Nitrogen Cycling During Seasonal Inundation. <i>Ecosystems</i> , 2010 , 13, 75-89	3.9	12
20	Water quality implications of hydrologic restoration alternatives in the Florida Everglades, United States. <i>Restoration Ecology</i> , 2017 , 25, S48	3.1	11
19	Factors Controlling Surface Water Flow in a Low-gradient Subtropical Wetland. Wetlands, 2010 , 30, 275	-286	11
18	Long-Term Ecological Research and Network-Level Science. <i>Eos</i> , 2014 , 95, 293-294	1.5	10
17	A simulation of saltmarsh water column dynamics. <i>Ecological Modelling</i> , 1987 , 36, 211-238	3	9
16	Impacts of hurricanes on surface water flow within a wetland. <i>Journal of Hydrology</i> , 2010 , 392, 164-173	6	8
15	Confirming a plant-mediated B iological Tidelin an aridland constructed treatment wetland. <i>Ecosphere</i> , 2017 , 8, e01756	3.1	7
14	Compositional aspects of herbaceous litter decomposition in the freshwater marshes of the Florida Everglades. <i>Plant and Soil</i> , 2018 , 423, 87-98	4.2	7

LIST OF PUBLICATIONS

13	Interaction of hydrology and nutrients in controlling ecosystem function in oligotrophic coastal environments of South Florida. <i>Hydrobiologia</i> , 2006 , 569, 1-2	2.4	6
12	The dilution and loss of wetland function associated with conversion to open water. <i>Wetlands Ecology and Management</i> , 1991 , 1, 163-171	2.1	5
11	Smallholder Adaptation to Drought in Costa Rica's Crony Capitalist Rice Economy. <i>Development and Change</i> , 2018 , 49, 1392-1421	2.9	4
10	A social-ecological-technological systems framework for urban ecosystem services. <i>One Earth</i> , 2022 , 5, 505-518	8.1	4
9	Potential N processing by southern Everglades freshwater marshes: Are Everglades marshes passive conduits for nitrogen?. <i>Estuarine, Coastal and Shelf Science</i> , 2012 , 96, 60-68	2.9	3
8	The effects of acidification on life-history traits of the freshwater clam Musculium partumeium (Say, 1822) (Bivalvia: Pisidiidae). <i>Canadian Journal of Zoology</i> , 1987 , 65, 113-121	1.5	3
7	High Potential Nitrate Removal by Urban Accidental Wetlands in a Desert City: Limitations and Spatiotemporal Patterns. <i>Ecosystems</i> , 2020 , 23, 1227-1242	3.9	2
6	Examining Seasonally Pulsed Detrital Transport in the Coastal Everglades Using a Sediment Tracing Technique. <i>Wetlands</i> , 2014 , 34, 123-133	1.7	1
5	A Decade of Ecosystem-Scale Research at an Aridland Constructed Treatment Wetland. <i>Frontiers in Environmental Science</i> , 2020 , 8,	4.8	1
4	Long-Term Trends in Nitrogen Removal by an Aridland Constructed Treatment Wetland. <i>Wetlands</i> , 2020 , 40, 2071-2083	1.7	1
3	A Thermodynamic Analysis of Soil Ecosystem Development in Northern Wetlands. <i>Wetlands</i> , 2016 , 36, 1143-1153	1.7	О
2	Response from Childers: Phosphorous Challenges beyond the Food System. <i>BioScience</i> , 2011 , 61, 582-	58 3 .7	
1	Plant transpiration in constructed treatment wetland: Effects on water budget and management consequences. <i>Journal of Environmental Management</i> , 2021 , 295, 113132	7.9	