Haoxuan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9049985/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supramolecular materials based on AIE luminogens (AIEgens): construction and applications. Chemical Society Reviews, 2020, 49, 1144-1172.	18.7	498
2	Doping AIE Photothermal Molecule into All-Fiber Aerogel with Self-Pumping Water Function for Efficiency Solar Steam Generation. ACS Applied Materials & Interfaces, 2020, 12, 26033-26040.	4.0	85
3	Side Areaâ€Assisted 3D Evaporator with Antibiofouling Function for Ultraâ€Efficient Solar Steam Generation. Advanced Materials, 2021, 33, e2102258.	11.1	79
4	Enhancing the Mechanical Properties of Electrospun Nanofiber Mats through Controllable Welding at the Cross Points. Macromolecular Rapid Communications, 2017, 38, 1600723.	2.0	73
5	Lowâ€Cost, Unsinkable, and Highly Efficient Solar Evaporators Based on Coating MWCNTs on Nonwovens with Unidirectional Waterâ€Transfer. Advanced Science, 2021, 8, e2101727.	5.6	65
6	Incorporation of gold nanocages into electrospun nanofibers for efficient water evaporation through photothermal heating. Materials Today Energy, 2019, 12, 129-135.	2.5	54
7	Facile Strategy for Fabrication of Flexible, Breathable, and Washable Piezoelectric Sensors via Welding of Nanofibers with Multiwalled Carbon Nanotubes (MWCNTs). ACS Applied Materials & Interfaces, 2019, 11, 38023-38030.	4.0	52
8	Photothermal Welding, Melting, and Patterned Expansion of Nonwoven Mats of Polymer Nanofibers for Biomedical and Printing Applications. Angewandte Chemie - International Edition, 2019, 58, 16416-16421.	7.2	39
9	Inorganic–Organic Nanocomposites Based on Aggregationâ€Induced Emission Luminogens. Advanced Functional Materials, 2021, 31, 2006952.	7.8	31
10	An electrospun poly(ε-caprolactone) nanocomposite fibrous mat with a high content of hydroxyapatite to promote cell infiltration. RSC Advances, 2018, 8, 25228-25235.	1.7	27
11	Enhancing the tactile and near-infrared sensing capabilities of electrospun PVDF nanofibers with the use of gold nanocages. Journal of Materials Chemistry C, 2018, 6, 10263-10269.	2.7	18
12	Transforming Nanofiber Mats into Hierarchical Scaffolds with Graded Changes in Porosity and/or Nanofiber Alignment. Macromolecular Rapid Communications, 2020, 41, 1900579.	2.0	13
13	Green and Scalable Fabrication of Nonwoven Composites Featured with Anisotropic Water Penetration. ACS Sustainable Chemistry and Engineering, 2019, 7, 19679-19685.	3.2	11
14	Reverse Thinking of the Aggregationâ€induced Emission Principle: Amplifying Molecular Motions to Boost Photothermal Efficiency of Nanofibers**. Angewandte Chemie, 2020, 132, 20551-20555.	1.6	6
15	Programmed Self-Assembly of Protein-Coated AIE-Featured Nanoparticles with Dual Imaging and Targeted Therapy to Cancer Cells. ACS Applied Materials & Interfaces, 2020, 12, 29641-29649.	4.0	5
16	A facile method for fabricating nano/microfibrous threeâ€dimensional scaffold with hierarchically porous to enhance cell infiltration. Journal of Applied Polymer Science, 2019, 136, 47046.	1.3	3
17	Facile Multicomponent Polymerizations toward Multifunctional Heterochain Polymers with α,β-Unsaturated Amidines. Macromolecules, 2021, 54, 9906-9918.	2.2	3