Alejandro Karelovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/90499/publications.pdf

Version: 2024-02-01

25 papers 1,570 citations

567281 15 h-index 610901 24 g-index

25 all docs

25 docs citations

25 times ranked

2036 citing authors

#	Article	IF	CITATIONS
1	Isotopic transient kinetic analysis of CO2 hydrogenation to methanol on Cu/SiO2 promoted by Ga and Zn. Journal of Catalysis, 2022, 406, 96-106.	6.2	13
2	Kinetic and structural understanding of bulk and supported vanadium-based catalysts for furfural oxidation to maleic anhydride. Catalysis Science and Technology, 2021, 11, 6477-6489.	4.1	1
3	The nature of the active sites of Pd–Ga catalysts in the hydrogenation of CO ₂ to methanol. Catalysis Science and Technology, 2020, 10, 6644-6658.	4.1	21
4	The consequences of support identity on the oxidative conversion of furfural to maleic anhydride on vanadia catalysts. Applied Catalysis A: General, 2020, 595, 117513.	4. 3	10
5	CO ₂ Hydrogenation to Methanol with Ga―and Znâ€Doped Mesoporous Cu/SiO ₂ Catalysts Prepared by the Aerosolâ€Assisted Solâ€Gel Process**. ChemSusChem, 2020, 13, 6409-6417.	6.8	23
6	Insights into the role of Zn and Ga in the hydrogenation of CO2 to methanol over Pd. International Journal of Hydrogen Energy, 2019, 44, 16526-16536.	7.1	20
7	The consequences of surface heterogeneity of cobalt nanoparticles on the kinetics of CO methanation. Catalysis Science and Technology, 2019, 9, 6415-6427.	4.1	6
8	The kinetic effect of H2O pressure on CO hydrogenation over different Rh cluster sizes. International Journal of Hydrogen Energy, 2019, 44, 768-777.	7.1	8
9	Mechanism and structure sensitivity of methanol synthesis from CO2 over SiO2-supported Cu nanoparticles. Journal of Catalysis, 2019, 369, 415-426.	6.2	79
10	Catalytic consequences of Ga promotion on Cu for CO ₂ hydrogenation to methanol. Catalysis Science and Technology, 2017, 7, 3375-3387.	4.1	68
11	New concepts in lowâ€temperature catalytic hydrogenation and their implications for process intensification. Canadian Journal of Chemical Engineering, 2016, 94, 662-677.	1.7	5
12	A modelling approach to the techno-economics of Biomass-to-SNG/Methanol systems: Standalone vs Integrated topologies. Chemical Engineering Journal, 2016, 286, 663-678.	12.7	41
13	Kinetic and in situ FTIR study of CO methanation on a Rh/Al2O3 catalyst. Catalysis Science and Technology, 2015, 5, 4532-4541.	4.1	13
14	CO2 hydrogenation with shape-controlled Pd nanoparticles embedded in mesoporous silica: Elucidating stability and selectivity issues. Catalysis Communications, 2015, 58, 11-15.	3.3	54
15	The role of copper particle size in low pressure methanol synthesis via CO ₂ hydrogenation over Cu/ZnO catalysts. Catalysis Science and Technology, 2015, 5, 869-881.	4.1	158
16	Unconventional Oxidants for Gas-Phase Oxidations. , 2014, , 877-920.		1
17	Oxidation of methanol to methyl formate over supported Pd nanoparticles: insights into the reaction mechanism at low temperature. Catalysis Science and Technology, 2014, 4, 3298-3305.	4.1	32
18	Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts. Journal of Catalysis, 2013, 301, 141-153.	6.2	259

#	Article	IF	CITATIONS
19	Improving the Hydrogenation Function of Pd/\hat{l}^3 -Al ₂ O ₃ Catalyst by Rh/ \hat{l}^3 -Al ₂ Methanation at Low Temperature. ACS Catalysis, 2013, 3, 2799-2812.	11.2	156
20	Effect of the structural and morphological properties of Cu/ZnO catalysts prepared by citrate method on their activity toward methanol synthesis from CO2 and H2 under mild reaction conditions. Catalysis Today, 2012, 197, 109-118.	4.4	67
21	Effect of the support on the catalytic stability of Rh formulations for the water–gas shift reaction. Applied Catalysis A: General, 2012, 435-436, 99-106.	4.3	13
22	Methanation of CO2: Further insight into the mechanism over Rh/ \hat{I}^3 -Al2O3 catalyst. Applied Catalysis B: Environmental, 2012, 113-114, 2-10.	20.2	260
23	CO2 hydrogenation at low temperature over Rh/ \hat{I}^3 -Al2O3 catalysts: Effect of the metal particle size on catalytic performances and reaction mechanism. Applied Catalysis B: Environmental, 2012, 113-114, 237-249.	20.2	218
24	A sustainable aqueous route to highly stable suspensions of monodispersed nano ruthenia. Green Chemistry, 2011, 13, 3230.	9.0	35
25	Insight on the promoting effect of Zr and Ti on the catalytic properties of Rh/SiO2 for partial oxidation of methane. Applied Catalysis A: General, 2010, 384, 220-229.	4.3	9