
Alejandro Karelovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/90499/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methanation of CO2: Further insight into the mechanism over Rh/Î ³ -Al2O3 catalyst. Applied Catalysis B: Environmental, 2012, 113-114, 2-10.	20.2	260
2	Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts. Journal of Catalysis, 2013, 301, 141-153.	6.2	259
3	CO2 hydrogenation at low temperature over Rh/Ĵ³-Al2O3 catalysts: Effect of the metal particle size on catalytic performances and reaction mechanism. Applied Catalysis B: Environmental, 2012, 113-114, 237-249.	20.2	218
4	The role of copper particle size in low pressure methanol synthesis via CO ₂ hydrogenation over Cu/ZnO catalysts. Catalysis Science and Technology, 2015, 5, 869-881.	4.1	158
5	Improving the Hydrogenation Function of Pd/γ-Al ₂ O ₃ Catalyst by Rh/γ-Al ₂ O ₃ Addition in CO ₂ Methanation at Low Temperature. ACS Catalysis, 2013, 3, 2799-2812.	11.2	156
6	Mechanism and structure sensitivity of methanol synthesis from CO2 over SiO2-supported Cu nanoparticles. Journal of Catalysis, 2019, 369, 415-426.	6.2	79
7	Catalytic consequences of Ga promotion on Cu for CO ₂ hydrogenation to methanol. Catalysis Science and Technology, 2017, 7, 3375-3387.	4.1	68
8	Effect of the structural and morphological properties of Cu/ZnO catalysts prepared by citrate method on their activity toward methanol synthesis from CO2 and H2 under mild reaction conditions. Catalysis Today, 2012, 197, 109-118.	4.4	67
9	CO2 hydrogenation with shape-controlled Pd nanoparticles embedded in mesoporous silica: Elucidating stability and selectivity issues. Catalysis Communications, 2015, 58, 11-15.	3.3	54
10	A modelling approach to the techno-economics of Biomass-to-SNG/Methanol systems: Standalone vs Integrated topologies. Chemical Engineering Journal, 2016, 286, 663-678.	12.7	41
11	A sustainable aqueous route to highly stable suspensions of monodispersed nano ruthenia. Green Chemistry, 2011, 13, 3230.	9.0	35
12	Oxidation of methanol to methyl formate over supported Pd nanoparticles: insights into the reaction mechanism at low temperature. Catalysis Science and Technology, 2014, 4, 3298-3305.	4.1	32
13	CO ₂ Hydrogenation to Methanol with Ga―and Znâ€Doped Mesoporous Cu/SiO ₂ Catalysts Prepared by the Aerosolâ€Assisted Solâ€Gel Process**. ChemSusChem, 2020, 13, 6409-6417.	6.8	23
14	The nature of the active sites of Pd–Ga catalysts in the hydrogenation of CO ₂ to methanol. Catalysis Science and Technology, 2020, 10, 6644-6658.	4.1	21
15	Insights into the role of Zn and Ga in the hydrogenation of CO2 to methanol over Pd. International Journal of Hydrogen Energy, 2019, 44, 16526-16536.	7.1	20
16	Effect of the support on the catalytic stability of Rh formulations for the water–gas shift reaction. Applied Catalysis A: General, 2012, 435-436, 99-106.	4.3	13
17	Kinetic and in situ FTIR study of CO methanation on a Rh/Al2O3 catalyst. Catalysis Science and Technology, 2015, 5, 4532-4541.	4.1	13
18	lsotopic transient kinetic analysis of CO2 hydrogenation to methanol on Cu/SiO2 promoted by Ga and Zn. Journal of Catalysis, 2022, 406, 96-106.	6.2	13

Alejandro Karelovic

#	Article	IF	CITATIONS
19	The consequences of support identity on the oxidative conversion of furfural to maleic anhydride on vanadia catalysts. Applied Catalysis A: General, 2020, 595, 117513.	4.3	10
20	Insight on the promoting effect of Zr and Ti on the catalytic properties of Rh/SiO2 for partial oxidation of methane. Applied Catalysis A: General, 2010, 384, 220-229.	4.3	9
21	The kinetic effect of H2O pressure on CO hydrogenation over different Rh cluster sizes. International Journal of Hydrogen Energy, 2019, 44, 768-777.	7.1	8
22	The consequences of surface heterogeneity of cobalt nanoparticles on the kinetics of CO methanation. Catalysis Science and Technology, 2019, 9, 6415-6427.	4.1	6
23	New concepts in lowâ€ŧemperature catalytic hydrogenation and their implications for process intensification. Canadian Journal of Chemical Engineering, 2016, 94, 662-677.	1.7	5
24	Unconventional Oxidants for Gas-Phase Oxidations. , 2014, , 877-920.		1
25	Kinetic and structural understanding of bulk and supported vanadium-based catalysts for furfural oxidation to maleic anhydride. Catalysis Science and Technology, 2021, 11, 6477-6489.	4.1	1