Francesco Neri

List of Publications by Citations

Source: https://exaly.com/author-pdf/9049730/francesco-neri-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,066 22 45 g-index

59 2,627 11.6 4.74 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
49	Intragenic DNA methylation prevents spurious transcription initiation. <i>Nature</i> , 2017 , 543, 72-77	50.4	351
48	AKI Recovery Induced by Mesenchymal Stromal Cell-Derived Extracellular Vesicles Carrying MicroRNAs. <i>Journal of the American Society of Nephrology: JASN</i> , 2015 , 26, 2349-60	12.7	164
47	TET1 is a tumour suppressor that inhibits colon cancer growth by derepressing inhibitors of the WNT pathway. <i>Oncogene</i> , 2015 , 34, 4168-76	9.2	130
46	Dnmt3L antagonizes DNA methylation at bivalent promoters and favors DNA methylation at gene bodies in ESCs. <i>Cell</i> , 2013 , 155, 121-34	56.2	124
45	Renal Regenerative Potential of Different Extracellular Vesicle Populations Derived from Bone Marrow Mesenchymal Stromal Cells. <i>Tissue Engineering - Part A</i> , 2017 , 23, 1262-1273	3.9	117
44	Genome-wide analysis identifies a functional association of Tet1 and Polycomb repressive complex 2 in mouse embryonic stem cells. <i>Genome Biology</i> , 2013 , 14, R91	18.3	115
43	Cellular and epigenetic drivers of stem cell ageing. <i>Nature Reviews Molecular Cell Biology</i> , 2018 , 19, 594	l- 6 1807	110
42	Single-Base Resolution Analysis of 5-Formyl and 5-Carboxyl Cytosine Reveals Promoter DNA Methylation Dynamics. <i>Cell Reports</i> , 2015 , 10, 674-683	10.6	91
41	Genome-wide profiling of mouse RNA secondary structures reveals key features of the mammalian transcriptome. <i>Genome Biology</i> , 2014 , 15, 491	18.3	87
40	Epigenetic stress responses induce muscle stem-cell ageing by Hoxa9 developmental signals. <i>Nature</i> , 2016 , 540, 428-432	50.4	79
39	Myc regulates the transcription of the PRC2 gene to control the expression of developmental genes in embryonic stem cells. <i>Molecular and Cellular Biology</i> , 2012 , 32, 840-51	4.8	74
38	High-throughput single-base resolution mapping of RNA 2EO-methylated residues. <i>Nucleic Acids Research</i> , 2017 , 45, 1433-1441	20.1	71
37	PD-L1 up-regulation in melanoma increases disease aggressiveness and is mediated through miR-17-5p. <i>Oncotarget</i> , 2017 , 8, 15894-15911	3.3	69
36	Endothelial cell adhesion to the extracellular matrix induces c-Src-dependent VEGFR-3 phosphorylation without the activation of the receptor intrinsic kinase activity. <i>Circulation Research</i> , 2010 , 106, 1839-48	15.7	66
35	Mutations in NOTCH1 PEST domain orchestrate CCL19-driven homing of chronic lymphocytic leukemia cells by modulating the tumor suppressor gene DUSP22. <i>Leukemia</i> , 2017 , 31, 1882-1893	10.7	39
34	Cohesin-mediated NF- B signaling limits hematopoietic stem cell self-renewal in aging and inflammation. <i>Journal of Experimental Medicine</i> , 2019 , 216, 152-175	16.6	39
33	Citron Kinase Deficiency Leads to Chromosomal Instability and TP53-Sensitive Microcephaly. <i>Cell Reports</i> , 2017 , 18, 1674-1686	10.6	35

(2015-2013)

32	FOSL1 controls the assembly of endothelial cells into capillary tubes by direct repression of □ and B integrin transcription. <i>Molecular and Cellular Biology</i> , 2013 , 33, 1198-209	4.8	34
31	TET1 is controlled by pluripotency-associated factors in ESCs and downmodulated by PRC2 in differentiated cells and tissues. <i>Nucleic Acids Research</i> , 2015 , 43, 6814-26	20.1	29
30	TFEB controls vascular development by regulating the proliferation of endothelial cells. <i>EMBO Journal</i> , 2019 , 38,	13	28
29	Methylation-assisted bisulfite sequencing to simultaneously map 5fC and 5caC on a genome-wide scale for DNA demethylation analysis. <i>Nature Protocols</i> , 2016 , 11, 1191-205	18.8	25
28	MREdictor: a two-step dynamic interaction model that accounts for mRNA accessibility and Pumilio binding accurately predicts microRNA targets. <i>Nucleic Acids Research</i> , 2013 , 41, 8421-33	20.1	23
27	Myc and max genome-wide binding sites analysis links the Myc regulatory network with the polycomb and the core pluripotency networks in mouse embryonic stem cells. <i>PLoS ONE</i> , 2014 , 9, e8893	3 3 ·7	20
26	Choice of Alternative Polyadenylation Sites, Mediated by the RNA-Binding Protein Elavl3, Plays a Role in Differentiation of Inhibitory Neuronal Progenitors. <i>Frontiers in Cellular Neuroscience</i> , 2018 , 12, 518	6.1	19
25	The long intergenic non-coding RNA CCR492 functions as a let-7 competitive endogenous RNA to regulate c-Myc expression. <i>Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms</i> , 2016 , 1859, 132	2-32	19
24	NR2F1 regulates regional progenitor dynamics in the mouse neocortex and cortical gyrification in BBSOAS patients. <i>EMBO Journal</i> , 2020 , 39, e104163	13	15
23	Rictor/mTORC2 deficiency enhances keratinocyte stress tolerance via mitohormesis. <i>Cell Death and Differentiation</i> , 2017 , 24, 731-746	12.7	14
22	Hypoxia controls Flvcr1 gene expression in Caco2 cells through HIF2 and ETS1. <i>Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms</i> , 2014 , 1839, 259-64	6	12
21	RNA structure framework: automated transcriptome-wide reconstruction of RNA secondary structures from high-throughput structure probing data. <i>Bioinformatics</i> , 2016 , 32, 459-61	7.2	11
20	High-throughput single nucleotide variant discovery in E14 mouse embryonic stem cells provides a new reference genome assembly. <i>Genomics</i> , 2014 , 104, 121-7	4.3	11
19	Snai1 promotes ESC exit from the pluripotency by direct repression of self-renewal genes. <i>Stem Cells</i> , 2015 , 33, 742-50	5.8	7
18	Aging Triggers H3K27 Trimethylation Hoarding in the Chromatin of Skeletal Muscle. <i>Cells</i> , 2019 , 8,	7.9	6
17	Mechanistic insights into p53-regulated cytotoxicity of combined entinostat and irinotecan against colorectal cancer cells. <i>Molecular Oncology</i> , 2021 , 15, 3404-3429	7.9	6
16	HAT cofactor TRRAP modulates microtubule dynamics via SP1 signaling to prevent neurodegeneration. <i>ELife</i> , 2021 , 10,	8.9	4
15	High-throughput whole-genome sequencing of E14 mouse embryonic stem cells. <i>Genomics Data</i> , 2015 , 3, 6-7		3

14	Anti-proliferative and apoptotic effect of gemini curcumin in p53-wild type and p53-mutant colorectal cancer cell lines. <i>International Journal of Pharmaceutics</i> , 2021 , 601, 120592	6.5	3
13	DNA methylation modulates allograft survival and acute rejection after renal transplantation by regulating the mTOR pathway. <i>American Journal of Transplantation</i> , 2021 , 21, 567-581	8.7	3
12	Snai1 represses Nanog to promote embryonic stem cell differentiation. <i>Genomics Data</i> , 2015 , 4, 82-3		2
11	The androgen receptor-lncRNASAT1-AKT-p15 axis mediates androgen-induced cellular senescence in prostate cancer cells. <i>Oncogene</i> , 2021 ,	9.2	2
10	A Novel Splice Variant of the Inhibitor of Growth 3 Lacks the Plant Homeodomain and Regulates Epithelial-Mesenchymal Transition in Prostate Cancer Cells. <i>Biomolecules</i> , 2021 , 11,	5.9	1
9	Antithetic hTERT Regulation by Androgens in Prostate Cancer Cells: hTERT Inhibition Is Mediated by the ING1 and ING2 Tumor Suppressors. <i>Cancers</i> , 2021 , 13,	6.6	1
8	Intestinal stem cells heterogeneity and clonal dominance during aging: two faces of the same coin?. <i>Mechanisms of Ageing and Development</i> , 2020 , 189, 111247	5.6	O
7	Establishment of a fluorescent reporter of RNA-polymerase II activity to identify dormant cells. <i>Nature Communications</i> , 2021 , 12, 3318	17.4	O
6	Characterization of an in vitro 3D intestinal organoid model[by using massive RNAseq-based transcriptome profiling. <i>Scientific Reports</i> , 2021 , 11, 16668	4.9	O
5	Single-cell atlas of the aging mouse colon <i>IScience</i> , 2022 , 25, 104202	6.1	O
4	Transcriptome Profiling of HCT-116 Colorectal Cancer Cells with RNA Sequencing Reveals Novel Targets for Polyphenol Nano Curcumin. <i>Molecules</i> , 2022 , 27, 3470	4.8	O
3	Mutations in NOTCH1 PEST Domain Orchestrate CCL19-Driven Homing of Chronic Lymphocytic Leukemia (CLL) Cells By Modulating the Tumor Suppressor Gene DUSP22. <i>Blood</i> , 2016 , 128, 969-969	2.2	
2	Low-Input Whole-Genome Bisulfite Sequencing. <i>Methods in Molecular Biology</i> , 2021 , 2351, 353-368	1.4	
1	Role of Age-Related Changes in DNA Methylation in the Disproportionate Susceptibility and Worse Outcomes of Sepsis in Older Adults <i>Frontiers in Medicine</i> , 2022 , 9, 822847	4.9	