Mauro Di Pilato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9049503/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stromal Microenvironment Shapes the Intratumoral Architecture of Pancreatic Cancer. Cell, 2019, 178, 160-175.e27.	28.9	367
2	CXCR6 positions cytotoxic TÂcells to receive critical survival signals in the tumor microenvironment. Cell, 2021, 184, 4512-4530.e22.	28.9	180
3	The Evolution of Poxvirus Vaccines. Viruses, 2015, 7, 1726-1803.	3.3	164
4	Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature, 2019, 570, 112-116.	27.8	147
5	Expansion of tumor-associated Treg cells upon disruption of a CTLA-4-dependent feedback loop. Cell, 2021, 184, 3998-4015.e19.	28.9	92
6	T cells armed with C-X-C chemokine receptor type 6 enhance adoptive cell therapy for pancreatic tumours. Nature Biomedical Engineering, 2021, 5, 1246-1260.	22.5	80
7	Behavioural immune landscapes of inflammation. Nature, 2022, 601, 415-421.	27.8	53
8	CXCL10 chemokine regulates heterogeneity of the CD8+ TÂcell response and viral set point during chronic infection. Immunity, 2022, 55, 82-97.e8.	14.3	33
9	Distinct Roles of Vaccinia Virus NF-κB Inhibitor Proteins A52, B15, and K7 in the Immune Response. Journal of Virology, 2017, 91, .	3.4	31
10	NFκB activation by modified vaccinia virus as a novel strategy to enhance neutrophil migration and HIV-specific T-cell responses. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1333-E1342.	7.1	26
11	Deletion of the Vaccinia Virus Gene A46R, Encoding for an Inhibitor of TLR Signalling, Is an Effective Approach to Enhance the Immunogenicity in Mice of the HIV/AIDS Vaccine Candidate NYVAC-C. PLoS ONE, 2013, 8, e74831.	2.5	25
12	New vaccinia virus promoter as a potential candidate for future vaccines. Journal of General Virology, 2013, 94, 2771-2776.	2.9	22
13	Distinct p21 requirements for regulating normal and self-reactive T cells through IFN-Î ³ production. Scientific Reports, 2015, 5, 7691.	3.3	22
14	HIV-1 Balances the Fitness Costs and Benefits of Disrupting the Host Cell Actin Cytoskeleton Early after Mucosal Transmission. Cell Host and Microbe, 2019, 25, 73-86.e5.	11.0	22
15	Modification of promoter spacer length in vaccinia virus as a strategy to control the antigen expression. Journal of General Virology, 2015, 96, 2360-2371.	2.9	14
16	Neutrophil subtypes shape HIV-specific CD8 T-cell responses after vaccinia virus infection. Npj Vaccines, 2021, 6, 52.	6.0	6
17	Neutrophil and vaccine. Cell Cycle, 2015, 14, 1615-1616.	2.6	1