Shichun Mu

List of Publications by Citations

Source: https://exaly.com/author-pdf/9049213/shichun-mu-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

116 17,025 309 75 h-index g-index citations papers 21,693 318 10.7 7.32 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
309	From 3D ZIF Nanocrystals to CoNx/C Nanorod Array Electrocatalysts for ORR, OER, and ZnAir Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1704638	15.6	541
308	Multifunctional MoN/C@MoS2 Electrocatalysts for HER, OER, ORR, and ZnAir Batteries. <i>Advanced Functional Materials</i> , 2017 , 27, 1702300	15.6	519
307	RuP -Based Catalysts with Platinum-like Activity and Higher Durability for the Hydrogen Evolution Reaction at All pH Values. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 11559-11564	16.4	429
306	Co2PLIoN Double Active Centers Confined in N-Doped Carbon Nanotube: Heterostructural Engineering for Trifunctional Catalysis toward HER, ORR, OER, and ZnAir Batteries Driven Water Splitting. Advanced Functional Materials, 2018, 28, 1805641	15.6	303
305	Carbon Nanosheets Containing Discrete Co-N-B-C Active Sites for Efficient Oxygen Electrocatalysis and Rechargeable Zn-Air Batteries. <i>ACS Nano</i> , 2018 , 12, 1894-1901	16.7	294
304	An Isolated Zinc-Cobalt Atomic Pair for Highly Active and Durable Oxygen Reduction. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 2622-2626	16.4	292
303	2D Dual-Metal Zeolitic-Imidazolate-Framework-(ZIF)-Derived Bifunctional Air Electrodes with Ultrahigh Electrochemical Properties for Rechargeable ZincAir Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1705048	15.6	269
302	A universal synthesis strategy for P-rich noble metal diphosphide-based electrocatalysts for the hydrogen evolution reaction. <i>Energy and Environmental Science</i> , 2019 , 12, 952-957	35.4	265
301	Fe, Cu-Coordinated ZIF-Derived Carbon Framework for Efficient Oxygen Reduction Reaction and ZincAir Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1802596	15.6	245
300	A New Core/Shell NiAu/Au Nanoparticle Catalyst with Pt-like Activity for Hydrogen Evolution Reaction. <i>Journal of the American Chemical Society</i> , 2015 , 137, 5859-62	16.4	229
299	Interface Engineering of Hierarchical Branched Mo-Doped Ni3S2/NixPy Hollow Heterostructure Nanorods for Efficient Overall Water Splitting. <i>Advanced Energy Materials</i> , 2020 , 10, 1903891	21.8	225
298	Metal-organic frameworks derived reverse-encapsulation Co-NC@Mo2C complex for efficient overall water splitting. <i>Nano Energy</i> , 2019 , 57, 746-752	17.1	222
297	Polyaniline-functionalized carbon nanotube supported platinum catalysts. <i>Langmuir</i> , 2011 , 27, 5582-8	4	215
296	Nitrogen-doped reduced graphene oxide supports for noble metal catalysts with greatly enhanced activity and stability. <i>Applied Catalysis B: Environmental</i> , 2013 , 132-133, 379-388	21.8	211
295	N-P-O co-doped high performance 3D graphene prepared through red phosphorous-assisted Butting-thinItechnique: A universal synthesis and multifunctional applications. <i>Nano Energy</i> , 2016 , 28, 346-355	17.1	181
294	Sulfuration of an Fe-N-C Catalyst Containing Fe C/Fe Species to Enhance the Catalysis of Oxygen Reduction in Acidic Media and for Use in Flexible Zn-Air Batteries. <i>Advanced Materials</i> , 2018 , 30, e1804.	5 64	179
293	N,B-codoped defect-rich graphitic carbon nanocages as high performance multifunctional electrocatalysts. <i>Nano Energy</i> , 2017 , 42, 334-340	17.1	170

(2016-2016)

292	Flexible molybdenum phosphide nanosheet array electrodes for hydrogen evolution reaction in a wide pH range. <i>Applied Catalysis B: Environmental</i> , 2016 , 196, 193-198	21.8	164
291	Phytic acid-derivative transition metal phosphides encapsulated in N,P-codoped carbon: an efficient and durable hydrogen evolution electrocatalyst in a wide pH range. <i>Nanoscale</i> , 2017 , 9, 3555-3	<i>5</i> 60	158
290	Iron-Doped Nickel Phosphide Nanosheet Arrays: An Efficient Bifunctional Electrocatalyst for Water Splitting. <i>ACS Applied Materials & Distriction (Splitting)</i> 26001-26007	9.5	158
289	Effects of Intrinsic Pentagon Defects on Electrochemical Reactivity of Carbon Nanomaterials. Angewandte Chemie - International Edition, 2019, 58, 3859-3864	16.4	146
288	Rational Design of Holey 2D Nonlayered Transition Metal Carbide/Nitride Heterostructure Nanosheets for Highly Efficient Water Oxidation. <i>Advanced Energy Materials</i> , 2019 , 9, 1803768	21.8	143
287	Nitrogen-Doped carbon coupled FeNi3 intermetallic compound as advanced bifunctional electrocatalyst for OER, ORR and zn-air batteries. <i>Applied Catalysis B: Environmental</i> , 2020 , 268, 118729	21.8	141
286	A highly electronic conductive cobalt nickel sulphide dendrite/quasi-spherical nanocomposite for a supercapacitor electrode with ultrahigh areal specific capacitance. <i>Journal of Power Sources</i> , 2015 , 295, 314-322	8.9	139
285	A universal synthesis strategy for single atom dispersed cobalt/metal clusters heterostructure boosting hydrogen evolution catalysis at all pH values. <i>Nano Energy</i> , 2019 , 59, 472-480	17.1	138
284	Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. <i>Nature Communications</i> , 2021 , 12, 1734	17.4	138
283	Porous polyaniline-derived FeNxC/C catalysts with high activity and stability towards oxygen reduction reaction using ferric chloride both as an oxidant and iron source. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 1242-1246	13	136
282	General Strategy for the Synthesis of Transition-Metal Phosphide/N-Doped Carbon Frameworks for Hydrogen and Oxygen Evolution. <i>ACS Applied Materials & District States</i> , 2017, 9, 16187-16193	9.5	135
281	Defect Engineering in Carbon-Based Electrocatalysts: Insight into Intrinsic Carbon Defects. <i>Advanced Functional Materials</i> , 2020 , 30, 2001097	15.6	132
280	Self-Organized 3D Porous Graphene Dual-Doped with Biomass-Sponsored Nitrogen and Sulfur for Oxygen Reduction and Evolution. <i>ACS Applied Materials & District App</i>	9.5	127
279	Ru-doped 3D flower-like bimetallic phosphide with a climbing effect on overall water splitting. <i>Applied Catalysis B: Environmental</i> , 2020 , 279, 119396	21.8	127
278	Coupling NiSe2-Ni2P heterostructure nanowrinkles for highly efficient overall water splitting. Journal of Catalysis, 2019 , 377, 600-608	7.3	123
277	Semimetallic MoP2: an active and stable hydrogen evolution electrocatalyst over the whole pH range. <i>Nanoscale</i> , 2016 , 8, 8500-4	7.7	123
276	Transition-Metal Phosphides: Activity Origin, Energy-Related Electrocatalysis Applications, and Synthetic Strategies. <i>Advanced Functional Materials</i> , 2020 , 30, 2004009	15.6	122
275	All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystal and activated carbon materials. <i>Scientific Reports</i> , 2016 , 6, 23289	4.9	120

274	Engineered Graphene Materials: Synthesis and Applications for Polymer Electrolyte Membrane Fuel Cells. <i>Advanced Materials</i> , 2017 , 29, 1601741	24	118
273	Morphology controlled synthesis of monodisperse cobalt hydroxide for supercapacitor with high performance and long cycle life. <i>Journal of Power Sources</i> , 2014 , 256, 160-169	8.9	118
272	Template-free hydrothermal synthesis of nickel cobalt hydroxide nanoflowers with high performance for asymmetric supercapacitor. <i>Electrochimica Acta</i> , 2015 , 161, 279-289	6.7	118
271	Hydrogen storage in carbon nanotubes modified by microwave plasma etching and Pd decoration. <i>Carbon</i> , 2006 , 44, 762-767	10.4	118
270	MOF-derived 3D Fe-N-S co-doped carbon matrix/nanotube nanocomposites with advanced oxygen reduction activity and stability in both acidic and alkaline media. <i>Applied Catalysis B: Environmental</i> , 2019 , 250, 143-149	21.8	117
269	Defect and pyridinic nitrogen engineering of carbon-based metal-free nanomaterial toward oxygen reduction. <i>Nano Energy</i> , 2018 , 52, 307-314	17.1	114
268	MoC quantum dot embedded chitosan-derived nitrogen-doped carbon for efficient hydrogen evolution in a broad pH range. <i>Chemical Communications</i> , 2016 , 52, 12753-12756	5.8	112
267	CoP quantum dot embedded N, P dual-doped carbon self-supported electrodes with flexible and binder-free properties for efficient hydrogen evolution reactions. <i>Nanoscale</i> , 2018 , 10, 2902-2907	7.7	110
266	Hexapod PtRuCu Nanocrystalline Alloy for Highly Efficient and Stable Methanol Oxidation. <i>ACS Catalysis</i> , 2018 , 8, 7578-7584	13.1	109
265	Defective N/S-Codoped 3D Cheese-Like Porous Carbon Nanomaterial toward Efficient Oxygen Reduction and Zn-Air Batteries. <i>Small</i> , 2018 , 14, e1800563	11	105
264	Synthesis of Capsule-like Porous Hollow Nanonickel Cobalt Sulfides via Cation Exchange Based on the Kirkendall Effect for High-Performance Supercapacitors. <i>ACS Applied Materials & Description</i> , 2016 , 8, 9721-32	9.5	103
263	Smart reconstruction of dual-carbon decorated MnO for anode with high-capacity and ultralong-life lithium storage properties. <i>Carbon</i> , 2017 , 115, 95-104	10.4	102
262	Surface reconstruction engineering of cobalt phosphides by Ru inducement to form hollow Ru-RuPx-CoxP pre-electrocatalysts with accelerated oxygen evolution reaction. <i>Nano Energy</i> , 2018 , 53, 270-276	17.1	102
261	Atomic scale enhancement of metal support interactions between Pt and ZrC for highly stable electrocatalysts. <i>Energy and Environmental Science</i> , 2015 , 8, 1450-1455	35.4	101
260	Surface Evolution of PtCu Alloy Shell over Pd Nanocrystals Leads to Superior Hydrogen Evolution and Oxygen Reduction Reactions. <i>ACS Energy Letters</i> , 2018 , 3, 940-945	20.1	99
259	Simultaneous sulfonation and reduction of graphene oxide as highly efficient supports for metal nanocatalysts. <i>Carbon</i> , 2014 , 66, 312-319	10.4	98
258	In situ derived Fe/N/S-codoped carbon nanotubes from ZIF-8 crystals as efficient electrocatalysts for the oxygen reduction reaction and zincBir batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 2009	3-2009	97
257	Graphene quantum dots encapsulated tremella-like NiCo2O4 for advanced asymmetric supercapacitors. <i>Carbon</i> , 2019 , 146, 1-8	10.4	96

256	Ultrasmall tungsten phosphide nanoparticles embedded in nitrogen-doped carbon as a highly active and stable hydrogen-evolution electrocatalyst. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15327-1	5332	96	
255	Bifunctional effect of reduced graphene oxides to support active metal nanoparticles for oxygen reduction reaction and stability. <i>Journal of Materials Chemistry</i> , 2012 , 22, 21298		95	
254	Honeycomb-like mesoporous cobalt nickel phosphate nanospheres as novel materials for high performance supercapacitor. <i>Electrochimica Acta</i> , 2016 , 190, 118-125	6.7	93	
253	Nano-single crystal coalesced PtCu nanospheres as robust bifunctional catalyst for hydrogen evolution and oxygen reduction reactions. <i>Journal of Catalysis</i> , 2019 , 375, 164-170	7.3	91	
252	Ultralow Ru Loading Transition Metal Phosphides as High-Efficient Bifunctional Electrocatalyst for a Solar-to-Hydrogen Generation System. <i>Advanced Energy Materials</i> , 2020 , 10, 2000814	21.8	88	
251	Highly active platinum nanoparticles on graphene nanosheets with a significant improvement in stability and CO tolerance. <i>Langmuir</i> , 2012 , 28, 3979-86	4	86	
250	Synthesis of graphene oxide anchored porous manganese sulfide nanocrystals via the nanoscale Kirkendall effect for supercapacitors. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 12913-12919	13	84	
249	Top-Down Strategy to Synthesize Mesoporous Dual Carbon Armored MnO Nanoparticles for Lithium-Ion Battery Anodes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 12680-12686	9.5	83	
248	Single-Atom Catalysts for Electrochemical Hydrogen Evolution Reaction: Recent Advances and Future Perspectives. <i>Nano-Micro Letters</i> , 2020 , 12, 21	19.5	83	
247	Nano-ceramic support materials for low temperature fuel cell catalysts. <i>Nanoscale</i> , 2014 , 6, 5063-74	7.7	83	
246	Hydrothermal synthesis of a flower-like nano-nickel hydroxide for high performance supercapacitors. <i>Electrochimica Acta</i> , 2014 , 123, 158-166	6.7	83	
245	Perfluorosulfonic acid-functionalized Pt/carbon nanotube catalysts with enhanced stability and performance for use in proton exchange membrane fuel cells. <i>Carbon</i> , 2011 , 49, 82-88	10.4	83	
244	Transition metal/nitrogen dual-doped mesoporous graphene-like carbon nanosheets for the oxygen reduction and evolution reactions. <i>Nanoscale</i> , 2016 , 8, 13311-20	7.7	81	
243	A highly stable catalyst for PEM fuel cell based on durable titanium diboride support and polymer stabilization. <i>Applied Catalysis B: Environmental</i> , 2010 , 93, 233-240	21.8	81	
242	Iron oxide and phosphide encapsulated within N,P-doped microporous carbon nanofibers as advanced tri-functional electrocatalyst toward oxygen reduction/evolution and hydrogen evolution reactions and zinc-air batteries. <i>Journal of Power Sources</i> , 2019 , 413, 367-375	8.9	81	
241	Three dimensional few-layer porous carbon nanosheets towards oxygen reduction. <i>Applied Catalysis B: Environmental</i> , 2017 , 211, 148-156	21.8	79	
240	Egg derived nitrogen-self-doped carbon/carbon nanotube hybrids as noble-metal-free catalysts for oxygen reduction. <i>Journal of Power Sources</i> , 2014 , 271, 522-529	8.9	79	
239	Nanocarbon-intercalated and FeN-codoped graphene as a highly active noble-metal-free bifunctional electrocatalyst for oxygen reduction and evolution. <i>Journal of Materials Chemistry A</i> , 2017 5 1930-1934	13	78	

238	Transforming waste biomass with an intrinsically porous network structure into porous nitrogen-doped graphene for highly efficient oxygen reduction. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 10392-9	3.6	78
237	RuP2-Based Catalysts with Platinum-like Activity and Higher Durability for the Hydrogen Evolution Reaction at All pH Values. <i>Angewandte Chemie</i> , 2017 , 129, 11717-11722	3.6	78
236	An Isolated Zinctobalt Atomic Pair for Highly Active and Durable Oxygen Reduction. <i>Angewandte Chemie</i> , 2019 , 131, 2648-2652	3.6	78
235	An ambient aqueous synthesis for highly dispersed and active Pd/C catalyst for formic acid electro-oxidation. <i>Journal of Power Sources</i> , 2010 , 195, 7246-7249	8.9	75
234	Nano-silicon carbide supported catalysts for PEM fuel cells with high electrochemical stability and improved performance by addition of carbon. <i>Applied Catalysis B: Environmental</i> , 2010 , 100, 190-196	21.8	75
233	Carbon nanotubes intercalated Co/N-doped porous carbon nanosheets as efficient electrocatalyst for oxygen reduction reaction and zinc batteries. <i>Chemical Engineering Journal</i> , 2018 , 342, 163-170	14.7	74
232	The role of iron nitrides in the Fe-N-C catalysis system towards the oxygen reduction reaction. <i>Nanoscale</i> , 2017 , 9, 7641-7649	7.7	73
231	Mesoporous-silica induced doped carbon nanotube growth from metal-organic frameworks. <i>Nanoscale</i> , 2018 , 10, 6147-6154	7.7	73
230	Graphene/carbon nanospheres sandwich supported PEM fuel cell metal nanocatalysts with remarkably high activity and stability. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 2126-2132	13	72
229	Ultrafine Molybdenum Carbide Nanocrystals Confined in Carbon Foams via a Colloid-Confinement Route for Efficient Hydrogen Production. <i>Small Methods</i> , 2018 , 2, 1700396	12.8	69
228	Keratin-derived S/N co-doped graphene-like nanobubble and nanosheet hybrids for highly efficient oxygen reduction. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15870-15879	13	69
227	Hierarchical three-dimensional MnO nanorods/carbon anodes for ultralong-life lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 16936-16945	13	68
226	Activating rhodium phosphide-based catalysts for the pH-universal hydrogen evolution reaction. <i>Nanoscale</i> , 2018 , 10, 12407-12412	7.7	68
225	Facile Synthesis of Defect-Rich and S/N Co-Doped Graphene-Like Carbon Nanosheets as an Efficient Electrocatalyst for Primary and All-Solid-State Zn-Air Batteries. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 24545-24554	9.5	65
224	Cage-confinement pyrolysis route to size-controlled molybdenum-based oxygen electrode catalysts: From isolated atoms to clusters and nanoparticles. <i>Nano Energy</i> , 2020 , 67, 104288	17.1	65
223	Double Metal Diphosphide Pair Nanocages Coupled with P-Doped Carbon for Accelerated Oxygen and Hydrogen Evolution Kinetics. <i>ACS Applied Materials & Diphosphia (Control of Carbon)</i> 12, 727-733	9.5	65
222	Integrated design and construction of WP/W nanorod array electrodes toward efficient hydrogen evolution reaction. <i>Chemical Engineering Journal</i> , 2017 , 327, 705-712	14.7	64
221	Molybdenum Carbide-Derived Chlorine-Doped Ordered Mesoporous Carbon with Few-Layered Graphene Walls for Energy Storage Applications. <i>ACS Applied Materials & Description (Material & Material & Mater</i>	 37 ⁻ 72	63

220	Ultrastable nitrogen-doped carbon encapsulating molybdenum phosphide nanoparticles as highly efficient electrocatalyst for hydrogen generation. <i>Nanoscale</i> , 2016 , 8, 17256-17261	7.7	62
219	Dual active nitrogen doped hierarchical porous hollow carbon nanospheres as an oxygen reduction electrocatalyst for zinc-air batteries. <i>Nanoscale</i> , 2017 , 9, 13257-13263	7.7	62
218	Ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets for highly efficient water splitting at large current density. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 14545-	13554	61
217	Ultrahigh Conductive Copper/Large Flake Size Graphene Heterostructure Thin-Film with Remarkable Electromagnetic Interference Shielding Effectiveness. <i>Small</i> , 2018 , 14, e1704332	11	61
216	N,P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electrocatalysis for CO2RR, ORR and Zn-air battery. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 15271-15277	13	60
215	Surface nitridation of nickel-cobalt alloy nanocactoids raises the performance of water oxidation and splitting. <i>Applied Catalysis B: Environmental</i> , 2020 , 270, 118889	21.8	60
214	Flexible graphite films with high conductivity for radio-frequency antennas. <i>Carbon</i> , 2018 , 130, 164-169	10.4	60
213	Nanocrystalline-Li2FeSiO4 synthesized by carbon frameworks as an advanced cathode material for Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 6870-6878	13	60
212	A Generic Conversion Strategy: From 2D Metal Carbides (MxCy) to M-Self-Doped Graphene toward High-Efficiency Energy Applications. <i>Advanced Functional Materials</i> , 2017 , 27, 1604904	15.6	59
211	Nano-boron carbide supported platinum catalysts with much enhanced methanol oxidation activity and CO tolerance. <i>Journal of Materials Chemistry</i> , 2012 , 22, 9155		59
210	Efficient water splitting catalyzed by flexible NiP2 nanosheet array electrodes under both neutral and alkaline solutions. <i>New Journal of Chemistry</i> , 2017 , 41, 2154-2159	3.6	58
209	Transforming Two-Dimensional Boron Carbide into Boron and Chlorine Dual-Doped Carbon Nanotubes by Chlorination for Efficient Oxygen Reduction. <i>ACS Energy Letters</i> , 2018 , 3, 184-190	20.1	57
208	Construction of an iron and oxygen co-doped nickel phosphide based on MOF derivatives for highly efficient and long-enduring water splitting. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 4570-4578	13	56
207	Highly sensitive wearable sensor based on a flexible multi-layer graphene film antenna. <i>Science Bulletin</i> , 2018 , 63, 574-579	10.6	56
206	Rational inert-basal-plane activating design of ultrathin 1T' phase MoS with a MoO heterostructure for enhancing hydrogen evolution performances. <i>Nanoscale</i> , 2018 , 10, 16531-16538	7.7	56
205	Synergizing in-grown Ni3N/Ni heterostructured core and ultrathin Ni3N surface shell enables self-adaptive surface reconfiguration and efficient oxygen evolution reaction. <i>Nano Energy</i> , 2020 , 78, 105355	17.1	56
204	Ionothermal Route to Phase-Pure RuB2 Catalysts for Efficient Oxygen Evolution and Water Splitting in Acidic Media. <i>ACS Energy Letters</i> , 2020 , 5, 2909-2915	20.1	56
203	One particle@one cell: Highly monodispersed PtPd bimetallic nanoparticles for enhanced oxygen reduction reaction. <i>Nano Energy</i> , 2014 , 8, 214-222	17.1	55

202	Synergistic Coupling of Ni Nanoparticles with Ni C Nanosheets for Highly Efficient Overall Water Splitting. <i>Small</i> , 2020 , 16, e2001642	11	55
201	Li2FeSiO4 nanorods bonded with graphene for high performance batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9601-9608	13	54
200	One-pot synthesis of Pt/CeO 2 /C catalyst for improving the ORR activity and durability of PEMFC. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 13011-13019	6.7	53
199	Synthesis and electrochemical performance of Li2FeSiO4/C/carbon nanosphere composite cathode materials for lithium ion batteries. <i>Journal of Alloys and Compounds</i> , 2013 , 572, 158-162	5.7	51
198	Porous graphene supported Pt catalysts for proton exchange membrane fuel cells. <i>Electrochimica Acta</i> , 2014 , 132, 356-363	6.7	50
197	Synthesis of peanut-like hierarchical manganese carbonate microcrystals via magnetically driven self-assembly for high performance asymmetric supercapacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 3923-3931	13	49
196	A novel synthesis of carbon nanotubes directly from an indecomposable solid carbon source for electrochemical applications. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2137-2146	13	49
195	Defect and DopingICo-Engineered Non-Metal Nanocarbon ORR Electrocatalyst. <i>Nano-Micro Letters</i> , 2021 , 13, 65	19.5	49
194	Ultrathin carbon layer stabilized metal catalysts towards oxygen reduction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 14007-14014	13	48
193	A highly ordered multi-layered hydrogenated TiO2-II phase nanowire array negative electrode for 2.4 V aqueous asymmetric supercapacitors with high energy density and long cycle life. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 623-632	13	48
192	Constructing carbon-cohered high-index (222) faceted tantalum carbide nanocrystals as a robust hydrogen evolution catalyst. <i>Nano Energy</i> , 2017 , 36, 374-380	17.1	47
191	Hierarchical shuttle-like Li2FeSiO4 as a highly efficient cathode material for lithium-ion batteries. Journal of Power Sources, 2013 , 242, 171-178	8.9	47
190	Regulative Electronic States around Ruthenium/Ruthenium Disulphide Heterointerfaces for Efficient Water Splitting in Acidic Media. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 12328-123	3 ¹⁶ 4	47
189	Graphene activated 3D-hierarchical flower-like Li2FeSiO4 for high-performance lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16567-16573	13	46
188	Twinned Tungsten Carbonitride Nanocrystals Boost Hydrogen Evolution Activity and Stability. <i>Small</i> , 2019 , 15, e1900248	11	44
187	Improved lifetime of PEM fuel cell catalysts through polymer stabilization. <i>Electrochemistry Communications</i> , 2009 , 11, 1610-1614	5.1	44
186	Au nanoparticles self-assembled onto Nafion membranes for use as methanol-blocking barriers. <i>Electrochemistry Communications</i> , 2005 , 7, 1143-1147	5.1	43
185	Boron-rich environment boosting ruthenium boride on B, N doped carbon outperforms platinum for hydrogen evolution reaction in a universal pH range. <i>Nano Energy</i> , 2020 , 75, 104881	17.1	43

(2019-2015)

184	Nitrogen-self-doped carbon with a porous graphene-like structure as a highly efficient catalyst for oxygen reduction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 10851-10857	13	42
183	Na-Mn-O Nanocrystals as a High Capacity and Long Life Anode Material for Li-Ion Batteries. <i>Advanced Energy Materials</i> , 2017 , 7, 1602092	21.8	42
182	Ultranarrow Graphene Nanoribbons toward Oxygen Reduction and Evolution Reactions. <i>Advanced Science</i> , 2018 , 5, 1801375	13.6	41
181	Cobalt single atom site isolated Pt nanoparticles for efficient ORR and HER in acid media. <i>Nano Energy</i> , 2021 , 88, 106221	17.1	41
180	Carbon dioxide directly induced oxygen vacancy in the surface of lithium-rich layered oxides for high-energy lithium storage. <i>Journal of Power Sources</i> , 2019 , 432, 8-15	8.9	40
179	3D flower-like ZnFe-ZIF derived hierarchical Fe, N-Codoped carbon architecture for enhanced oxygen reduction in both alkaline and acidic media, and zinc-air battery performance. <i>Carbon</i> , 2020 , 161, 502-509	10.4	40
178	Tuning structural stability and lithium-storage properties by d -orbital hybridization substitution in full tetrahedron Li 2 FeSiO 4 nanocrystal. <i>Nano Energy</i> , 2016 , 20, 117-125	17.1	40
177	ZIF-8/LiFePO4 derived Fe-N-P Co-doped carbon nanotube encapsulated Fe2P nanoparticles for efficient oxygen reduction and Zn-air batteries. <i>Nano Research</i> , 2020 , 13, 818-823	10	39
176	Seed-mediated synthesis of large-diameter ternary TePtCo nanotubes for enhanced oxygen reduction reaction. <i>Applied Catalysis B: Environmental</i> , 2018 , 231, 277-282	21.8	39
175	Multihierarchical Structure of Hybridized Phosphates Anchored on Reduced Graphene Oxide for High Power Hybrid Energy Storage Devices. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 5679-5	683 683	38
174	Electronic Structure Control of Tungsten Oxide Activated by Ni for Ultrahigh-Performance Supercapacitors. <i>Small</i> , 2018 , 14, e1800381	11	38
173	Scalable cellulose-sponsored functionalized carbon nanorods induced by cobalt for efficient overall water splitting. <i>Carbon</i> , 2018 , 137, 274-281	10.4	38
172	Polymers of intrinsic microporosity in electrocatalysis: Novel pore rigidity effects and lamella palladium growth. <i>Electrochimica Acta</i> , 2014 , 128, 3-9	6.7	37
171	High stability platinum electrocatalysts with zirconiaBarbon hybrid supports. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1135-1141		37
170	Synergistic effect of cobalt and nickel on the superior electrochemical performances of rGO anchored nickel cobalt binary sulfides. <i>Electrochimica Acta</i> , 2016 , 212, 294-302	6.7	37
169	Nano conductive ceramic wedged graphene composites as highly efficient metal supports for oxygen reduction. <i>Scientific Reports</i> , 2014 , 4, 3968	4.9	36
168	Electronic tuning of confined sub-nanometer cobalt oxide clusters boosting oxygen catalysis and rechargeable ZnEir batteries. <i>Nano Energy</i> , 2021 , 83, 105813	17.1	36
167	Highly Exposed Active Sites of Defect-Enriched Derived MOFs for Enhanced Oxygen Reduction Reaction. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 17855-17862	8.3	35

166	An animal liver derived non-precious metal catalyst for oxygen reduction with high activity and stability. <i>RSC Advances</i> , 2014 , 4, 32811	3.7	35
165	Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries. <i>Nano Research</i> , 2021 , 14, 868-878	10	35
164	One-step growth of 35nm diameter palladium electrocatalyst in a carbon nanoparticledhitosan host and characterization for formic acid oxidation. <i>Electrochimica Acta</i> , 2010 , 55, 6601-6610	6.7	34
163	An iron-doped cobalt phosphide nano-electrocatalyst derived from a metal-organic framework for efficient water splitting. <i>Dalton Transactions</i> , 2019 , 48, 16555-16561	4.3	34
162	Defect Engineering on Carbon-Based Catalysts for Electrocatalytic CO Reduction. <i>Nano-Micro Letters</i> , 2020 , 13, 5	19.5	34
161	Efficient strategy for significantly decreasing overpotentials of hydrogen generation via oxidizing small molecules at flexible bifunctional CoSe electrodes. <i>Journal of Power Sources</i> , 2018 , 401, 238-244	8.9	34
160	Defect-enriched hollow porous CoN-doped carbon for oxygen reduction reaction and Zn-Air batteries. <i>Carbon</i> , 2020 , 167, 188-195	10.4	33
159	Ionic Liquid-Modified Microporous ZnCoNC-Based Electrocatalysts for Polymer Electrolyte Fuel Cells. <i>ACS Energy Letters</i> , 2019 , 4, 2104-2110	20.1	33
158	Accelerated durability tests of catalyst layers with various pore volume for catalyst coated membranes applied in PEM fuel cells. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 2872-2876	6.7	33
157	Graphene-doped electrospun nanofiber membrane electrodes and proton exchange membrane fuel cell performance. <i>Journal of Power Sources</i> , 2016 , 327, 384-393	8.9	32
156	A highly stable TiB2-supported Pt catalyst for polymer electrolyte membrane fuel cells. <i>Journal of Power Sources</i> , 2011 , 196, 7931-7936	8.9	32
155	Stabilizing Pt Nanocrystals Encapsulated in N-Doped Carbon as Double-Active Sites for Catalyzing Oxygen Reduction Reaction. <i>Langmuir</i> , 2019 , 35, 2580-2586	4	31
154	Vacancy-coordinated hydrogen evolution reaction on MoO3⊠ anchored atomically dispersed MoRu pairs. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 14466-14472	13	31
153	Anion exchange membrane based on alkali doped poly(2,5-benzimidazole) for fuel cell. <i>Solid State Ionics</i> , 2012 , 208, 52-55	3.3	31
152	Significantly Improved Water Oxidation of CoP Catalysts by Electrochemical Activation. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 17851-17859	8.3	30
151	RuRh Bimetallene Nanoring as High-efficiency pH-Universal Catalyst for Hydrogen Evolution Reaction. <i>Advanced Science</i> , 2021 , 8, 2002341	13.6	30
150	Observable Electrochemical Oxidation of Carbon Promoted by Platinum Nanoparticles. <i>ACS Applied Materials & ACS Applied & </i>	9.5	29
149	Hydrazine Hydrate Induced Two-Dimensional Porous Co3+ Enriched Co3O4 Nanosheets for Enhanced Water Oxidation Catalysis. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 9813-9821	8.3	28

(2017-2016)

148	Nano-size boron carbide intercalated graphene as high performance catalyst supports and electrodes for PEM fuel cells. <i>Carbon</i> , 2016 , 103, 449-456	10.4	28
147	Direct transformation of amorphous silicon carbide into graphene under low temperature and ambient pressure. <i>Scientific Reports</i> , 2013 , 3, 1148	4.9	28
146	Recycling of membrane electrode assembly of PEMFC by acid processing. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 2976-2979	6.7	28
145	A N-self-doped carbon catalyst derived from pig blood for oxygen reduction with high activity and stability. <i>Electrochimica Acta</i> , 2015 , 160, 139-144	6.7	27
144	MOF-assisted synthesis of octahedral carbon-supported PtCu nanoalloy catalysts for an efficient hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 19348-19356	13	27
143	Optimization of perfluorosulfonic acid ionomer loadings in catalyst layers of proton exchange membrane fuel cells. <i>Electrochimica Acta</i> , 2012 , 60, 437-442	6.7	26
142	Nanoframes of Co3O4Mo2N Heterointerfaces Enable High-Performance Bifunctionality toward Both Electrocatalytic HER and OER. <i>Advanced Functional Materials</i> ,2107382	15.6	26
141	Design Engineering, Synthesis Protocols, and Energy Applications of MOF-Derived Electrocatalysts. <i>Nano-Micro Letters</i> , 2021 , 13, 132	19.5	26
140	PHe bond oxygen reduction catalysts toward high-efficiency metallir batteries and fuel cells. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 9121-9127	13	26
139	Synergizing aliovalent doping and interface in heterostructured NiV nitride@oxyhydroxide core-shell nanosheet arrays enables efficient oxygen evolution. <i>Nano Energy</i> , 2021 , 85, 105961	17.1	26
138	Ultralow Ru Incorporated Amorphous Cobalt-Based Oxides for High-Current-Density Overall Water Splitting in Alkaline and Seawater Media. <i>Small</i> , 2021 , 17, e2102777	11	26
137	Enhanced SO2 and CO poisoning resistance of CeO2 modified Pt/C catalysts applied in PEM fuel cells. <i>Electrochimica Acta</i> , 2013 , 112, 304-309	6.7	25
136	Improving sulfur tolerance of noble metal catalysts by tungsten oxide-induced effects. <i>RSC Advances</i> , 2013 , 3, 764-773	3.7	25
135	High viscosity to highly dispersed PtPd bimetallic nanocrystals for enhanced catalytic activity and stability. <i>Chemical Communications</i> , 2016 , 52, 8219-22	5.8	25
134	Shrunken hollow Mo-N/Mo-C nanosphere structure for efficient hydrogen evolution in a broad pH range. <i>Electrochimica Acta</i> , 2019 , 298, 799-805	6.7	25
133	Effects of Intrinsic Pentagon Defects on Electrochemical Reactivity of Carbon Nanomaterials. <i>Angewandte Chemie</i> , 2019 , 131, 3899-3904	3.6	25
132	Atomic Level Dispersed Metal Mitrogen Carbon Catalyst toward Oxygen Reduction Reaction: Synthesis Strategies and Chemical Environmental Regulation. <i>Energy and Environmental Materials</i> , 2021 , 4, 5-18	13	25
131	H2O2-Assisted Synthesis of Porous N-Doped Graphene/Molybdenum Nitride Composites with Boosted Oxygen Reduction Reaction. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1601227	4.6	24

130	3D flexible hydrogen evolution electrodes with Se-promoted molybdenum sulfide nanosheet arrays. <i>RSC Advances</i> , 2016 , 6, 11077-11080	3.7	24
129	Thiourea-Zeolitic imidazolate Framework-67 assembly derived ColloO nanoparticles encapsulated in N, S Codoped open carbon shell as bifunctional oxygen electrocatalyst for rechargeable flexible solid ZnAir batteries. <i>Journal of Power Sources</i> , 2020 , 473, 228570	8.9	24
128	A self-template and KOH activation co-coupling strategy to synthesize ultrahigh surface area nitrogen-doped porous graphene for oxygen reduction. <i>RSC Advances</i> , 2016 , 6, 73292-73300	3.7	24
127	Intrinsically microporous polymer slows down fuel cell catalyst corrosion. <i>Electrochemistry Communications</i> , 2015 , 59, 72-76	5.1	23
126	Highly active Pt@Au nanoparticles encapsulated in perfluorosulfonic acid for the reduction of oxygen. <i>Chemical Communications</i> , 2011 , 47, 12792-4	5.8	23
125	Phosphorus-triggered synergy of phase transformation and chalcogenide vacancy migration in cobalt sulfide for an efficient oxygen evolution reaction. <i>Nanoscale</i> , 2020 , 12, 3129-3134	7.7	23
124	3D-ZIF scaffold derived carbon encapsulated iron nitride as a synergistic catalyst for ORR and zinc-air battery cathodes. <i>Carbon</i> , 2021 , 171, 368-375	10.4	23
123	One-pot synthesis of Pt/CeO2/C catalyst for enhancing the SO2 electrooxidation. <i>Electrochimica Acta</i> , 2017 , 229, 253-260	6.7	22
122	Cation vacancy-modulated PtPdRuTe five-fold twinned nanomaterial for catalyzing hydrogen evolution reaction. <i>Nano Energy</i> , 2019 , 61, 346-351	17.1	22
121	Reduced graphene oxide supported MnS nanotubes hybrid as a novel non-precious metal electrocatalyst for oxygen reduction reaction with high performance. <i>Journal of Power Sources</i> , 2017 , 362, 1-9	8.9	22
120	Heat-treated multi-walled carbon nanotubes as durable supports for PEM fuel cell catalysts. <i>Electrochimica Acta</i> , 2011 , 58, 736-742	6.7	22
119	Interfacial engineering of Co nanoparticles/Co2C nanowires boosts overall water splitting kinetics. <i>Applied Catalysis B: Environmental</i> , 2021 , 296, 120334	21.8	22
118	Structurally ordered PtSn intermetallic nanoparticles supported on ATO for efficient methanol oxidation reaction. <i>Nanoscale</i> , 2019 , 11, 19895-19902	7.7	21
117	Realizing the extraction of carbon from WC for in situ formation of W/WC heterostructures with efficient photoelectrochemical hydrogen evolution. <i>Nanoscale Horizons</i> , 2019 , 4, 196-201	10.8	21
116	Synergistic effect of charge transfer and short H-bonding on nanocatalyst surface for efficient oxygen evolution reaction. <i>Nano Energy</i> , 2019 , 59, 443-452	17.1	21
115	Effect of microstructure on HER catalytic properties of MoS2 vertically standing nanosheets. Journal of Alloys and Compounds, 2018, 747, 100-108	5.7	21
114	Phosphorization engineering ameliorated the electrocatalytic activity for overall water splitting on NiS nanosheets. <i>Dalton Transactions</i> , 2019 , 48, 13466-13471	4.3	21
113	Mineral nanofibre reinforced composite polymer electrolyte membranes with enhanced water retention capability in PEM fuel cells. <i>Journal of Membrane Science</i> , 2011 , 377, 134-140	9.6	21

112	Enhanced life of proton exchange membrane fuel cell catalysts using perfluorosulfonic acid stabilized carbon support. <i>Electrochimica Acta</i> , 2011 , 56, 2154-2159	6.7	21
111	Polyaniline and Perfluorosulfonic Acid Co-Stabilized Metal Catalysts for Oxygen Reduction Reaction. <i>Langmuir</i> , 2017 , 33, 5353-5361	4	20
110	Anion-Modulated Platinum for High-Performance Multifunctional Electrocatalysis toward HER, HOR, and ORR. <i>IScience</i> , 2020 , 23, 101793	6.1	20
109	Phosphorous-doped carbon coordinated iridium diphosphide bifunctional catalyst with ultralow iridium amount for efficient all-pH-value hydrogen evolution and oxygen reduction reactions. <i>Journal of Catalysis</i> , 2020 , 383, 244-253	7.3	20
108	Robust MOF-253-derived N-doped carbon confinement of Pt single nanocrystal electrocatalysts for oxygen evolution reaction. <i>Chinese Journal of Catalysis</i> , 2020 , 41, 839-846	11.3	20
107	Functionalizing carbon nanotubes for effective electrocatalysts supports by an intermittent microwave heating method. <i>Journal of Power Sources</i> , 2012 , 198, 1-6	8.9	20
106	Propagating Fe-N4 active sites with Vitamin C to efficiently drive oxygen electrocatalysis. <i>Nano Energy</i> , 2021 , 82, 105714	17.1	20
105	Stabilizing sulfur vacancy defects by performing "click" chemistry of ultrafine palladium to trigger a high-efficiency hydrogen evolution of MoS. <i>Nanoscale</i> , 2020 , 12, 9943-9949	7.7	20
104	Rational design of electrospun nanofiber-typed electrocatalysts for water splitting: A review. <i>Chemical Engineering Journal</i> , 2022 , 428, 131133	14.7	20
103	Degradation behaviors of perfluorosulfonic acid polymer electrolyte membranes for polymer electrolyte membrane fuel cells under varied acceleration conditions. <i>Journal of Applied Polymer Science</i> , 2013 , 129, 1586-1592	2.9	19
102	NaMnD@C yolkEhell nanorods as an ultrahigh electrochemical performance anode for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 18509-18517	13	18
101	Tuning the dual-active sites of ZIF-67 derived porous nanomaterials for boosting oxygen catalysis and rechargeable Zn-air batteries. <i>Nano Research</i> , 2020 , 14, 2353	10	18
100	TePtFe Nanotubes as High-Performing Bifunctional Electrocatalysts for the Oxygen Reduction Reaction and Hydrogen Evolution Reaction. <i>ChemSusChem</i> , 2018 , 11, 1328-1333	8.3	17
99	Oxidation Stability of Nanographite Materials. <i>Advanced Energy Materials</i> , 2013 , 3, 1176-1179	21.8	17
98	High conductive graphene assembled films with porous micro-structure for freestanding and ultra-low power strain sensors. <i>Science Bulletin</i> , 2020 , 65, 1363-1370	10.6	17
97	Synchronously improved graphitization and surface area in a 3D porous carbon network as a high capacity anode material for lithium/sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 126	0 ¹ ₹268	16
96	Superior electrochemical water oxidation in vacancy defect-rich 1.5 nm ultrathin trimetal-organic framework nanosheets. <i>Applied Catalysis B: Environmental</i> , 2021 , 296, 120095	21.8	16
95	Lithium storage properties of in situ synthesized Li2FeSiO4 and LiFeBO3 nanocomposites as advanced cathode materials for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23368-2	3 ¹ 3 ⁷ 75	15

94 Synthesis of platinum/multi-wall carbon nanotube catalysts. *Journal of Materials Research*, **2004**, 19, 227**9**-**?** 284₁₅

Graphene from amorphous titanium carbide by chlorination under 200 fC and atmospheric pressures. Scientific Reports, 2014, 4, 5494 Three-Dimensionally Costabilized Metal Catalysts toward an Oxygen Reduction Reaction. Langmuin, 2016, 32, 2236-44 Three-Dimensionally Costabilized Metal Catalysts toward an Oxygen Reduction Reaction. Langmuin, 2016, 32, 2236-44 Three-Dimensionally Debaviors of catalyst layers applied in PEM fuel cells by off-line accelerated test. International Journal of Hydrogen Energy, 2010, 35, 8155-8160 A Self-Humidifying Composite Membrane with Self-Assembled Pt Nanoparticles for Polymer Electrolyte Membrane Fuel Cells. Journal of the Electrochemical Society, 2006, 153, A1868 Phosphorus-Driven Electron Delocalization on Edge-Type FeN4 Active Sites for Oxygen Reduction in Acid Medium. ACS Catalysis, 2021, 11, 12754-12762 By Charling Inlatinum nanoparticles segregated by nickle sites for efficient ORR and HER processes. 12 14 The Ultra-small platinum nanoparticles segregated by nickle sites for efficient ORR and HER processes. 13 13 Sulfate lons Induced Concave Porous S-N Co-Doped Carbon Confined FeC Nanoclusters with Fe-N Sites for Efficient Oxygen Reduction in Alkaline and Acid Media. Small, 2021, 17, e2101001 Sulfate lons Induced Concave Porous S-N Co-Doped Carbon Confined FeC Nanoclusters with Fe-N Sites for Efficient Oxygen Reduction in Alkaline and Acid Media. Small, 2021, 17, e2101001 Solitorited niobium-self-doped graphene in-situ grown from 2D niobium carbide for catalyzing oxygen reduction. Carbon, 2018, 139, 1144-1151 Witralow nitrogen-doped carbon coupled carbon-doped Co304 microrods with tunable electron configurations for advanced Li-storage properties. Electrochimica Acta, 2019, 327, 135059 Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis 2022, 1, 51-87 Spherical Nis S/Fe-NIP Magic Cube with Ultrahigh Water/Seawater Oxidation Efficiency. Advanced Science, 2021, 8, e21022696 Two-Dimensional Most S				
Detaching behaviors of catalyst layers applied in PEM fuel cells by off-line accelerated test. International Journal of Hydrogen Energy, 2010, 35, 8155-8160 A Self-Humidifying Composite Membrane with Self-Assembled Pt Nanoparticles for Polymer Electrolyte Membrane Fuel Cells. Journal of the Electrochemical Society, 2006, 153, A1868 Phosphorus-Driven Electron Delocalization on Edge-Type FeN4 Active Sites for Oxygen Reduction in Acid Medium. ACS Catalysis, 2021, 11, 12754-12762 Wiltra-small platinum nanoparticles segregated by nickle sites for efficient ORR and HER processes. Journal of Energy Chemistry, 2022, 65, 48-54 Nanoceramic oxide hybrid electrolyte membranes for proton exchange membrane fuel cells. Journal of Nanoscience and Nanotechnology, 2014, 14, 1169-80 Sulfate Ions Induced Concave Porous S-N Co-Doped Carbon Confined FeC Nanoclusters with Fe-N Sites for Efficient Oxygen Reduction in Alkaline and Acid Media. Small, 2021, 17, e2101001 11 13 S5 Distorted niobium-self-doped graphene in-situ grown from 2D niobium carbide for catalyzing oxygen reduction. Carbon, 2018, 139, 1144-1151 Wiltralow nitrogen-doped carbon coupled carbon-doped Co3O4 microrods with tunable electron configurations for advanced Listorage properties. Electrochimica Acta, 2019, 327, 135059 Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis 2022, 1, 51-87 Spherical Ni S /Fe-NiP Magic Cube with Ultrahigh Water/Seawater Oxidation Efficiency. Advanced Science, 2021, 8, e21022096 Stabilizing Fe-N-C Catalysts as Model for Oxygen Reduction Reaction. Advanced Science, 2021, 8, e21022096 Two-Dimensional MoS: Structural Properties, Synthesis Methods, and Regulation Strategies toward Oxygen Reduction. Micromachines, 2021, 12, Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding	93		4.9	14
A Self-Humidifying Composite Membrane with Self-Assembled Pt Nanoparticles for Polymer Electrolyte Membrane Fuel Cells. Journal of the Electrochemical Society, 2006, 153, A1868 3-9 14 Phosphorus-Driven Electron Delocalization on Edge-Type FeN4 Active Sites for Oxygen Reduction in Acid Medium. ACS Catalysis, 2021, 11, 1275-8-12762 13.1 14 With Tarsmall platinum nanoparticles segregated by nickle sites for efficient ORR and HER processes. 12 14 Nanoceramic oxide hybrid electrolyte membranes for proton exchange membrane fuel cells. 13 13 Sulfate lons induced Concave Porous S-N Co-Doped Carbon Confined FeC Nanoclusters with Fe-N Siles for Efficient Oxygen Reduction in Alkaline and Acid Media. Small, 2021, 17, e2101001 11 13 Distorted niobium-self-doped graphene in-situ grown from 2D niobium carbide for catalyzing oxygen reduction. Carbon, 2018, 139, 1144-1151 10.4 12 Ultralow nitrogen-doped carbon coupled carbon-doped Co3O4 microrods with tunable electron configurations for advanced Li-storage properties. Electrochimica Acta, 2019, 327, 135059 67 12 Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis 2022, 1, 51-87 Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis 2022, 1, 51-87 Stabilizing Fe-N-C Catalysts as Model for Oxygen Reduction Reaction. Advanced Science, 2021, 8, e21022096 12 Two-Dimensional MoS: Structural Properties, Synthesis Methods, and Regulation Strategies toward Oxygen Reduction. Micromachines, 2021, 12, 12, 11 Lifting the energy density of lithum ion batteries using graphite film current collectors. Journal of Power Sources, 2020, 455, 227991 11 Platinized Graphene/ceramics Nano-sandwiched Architectures as advanced metal catalyst supports toward oxygen reduction. Journal of Energy Chemistry, 2017, 26, 1160-1167 11	92		4	14
Phosphorus-Driven Electron Delocalization on Edge-Type FeN4 Active Sites for Oxygen Reduction in Acid Medium. ACS Catalysis, 2021, 11, 12754-12762 By Phosphorus-Driven Electron Delocalization on Edge-Type FeN4 Active Sites for Oxygen Reduction in Acid Medium. ACS Catalysis, 2021, 11, 12754-12762 By Ultra-small platinum nanoparticles segregated by nickle sites for efficient ORR and HER processes. Journal of Energy Chemistry, 2022, 65, 48-54 By Nanoceramic oxide hybrid electrolyte membranes for proton exchange membrane fuel cells. Journal of Nanoscience and Nanotechnology, 2014, 14, 1169-80 Sulfate lons Induced Concave Porous S-N Co-Doped Carbon Confined FeC Nanoclusters with Fe-N Sites for Efficient Oxygen Reduction in Alkaline and Acid Media. Small, 2021, 17, e2101001 By Distorted niobium-self-doped graphene in-situ grown from 2D niobium carbide for catalyzing oxygen reduction. Carbon, 2018, 139, 1144-1151 By Ultralow nitrogen-doped carbon coupled carbon-doped Co3O4 microrods with tunable electron configurations for advanced Li-storage properties. Electrochimica Acta, 2019, 327, 135059 By Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis 2022, 1, 51-87 By Spherical Ni S /Fe-NiP Magic Cube with Ultrahigh Water/Seawater Oxidation Efficiency Advanced Science, 2022, 9, e2104846 Two-Dimensional MoS: Structural Properties, Synthesis Methods, and Regulation Strategies toward Oxygen Reduction. Micromachines, 2021, 12, 12 By Pating the energy density of lithium ion batteries using graphite film current collectors. Journal of Power Sources, 2020, 455, 227991 In situ constructing of ultrastable ceramic@graphene core-shell architectures as advanced metal catalyst supports toward oxygen reduction. Journal of Energy Chemistry, 2017, 26, 1160-1167 Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding	91		6.7	14
13. 14 14 18	90		3.9	14
Nanoceramic oxide hybrid electrolyte membranes for proton exchange membrane fuel cells. Journal of Nanoscience and Nanotechnology, 2014, 14, 1169-80 Sulfate Ions Induced Concave Porous S-N Co-Doped Carbon Confined FeC Nanoclusters with Fe-N Sites for Efficient Oxygen Reduction in Alkaline and Acid Media. Small, 2021, 17, e2101001 11 13 So Distorted niobium-self-doped graphene in-situ grown from 2D niobium carbide for catalyzing oxygen reduction. Carbon, 2018, 139, 1144-1151 Ultralow nitrogen-doped carbon coupled carbon-doped Co3O4 microrods with tunable electron configurations for advanced Li-storage properties. Electrochimica Acta, 2019, 327, 135059 Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis 2022, 1, 51-87 Spherical Nis / Fe-NiP Magic Cube with Ultrahigh Water/Seawater Oxidation Efficiency Advanced Science, 2022, 9, e2104846 13.6 12 Stabilizing Fe-N-C Catalysts as Model for Oxygen Reduction Reaction. Advanced Science, 2021, 8, e21022096 Two-Dimensional MoS: Structural Properties, Synthesis Methods, and Regulation Strategies toward Oxygen Reduction. Micromachines, 2021, 12, In situ constructing of ultrastable ceramic@graphene core-shell architectures as advanced metal catalyst supports toward oxygen reduction. Journal of Energy Chemistry, 2017, 26, 1160-1167 Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding	89		13.1	14
Sulfate lons Induced Concave Porous S-N Co-Doped Carbon Confined FeC Nanoclusters with Fe-N Sites for Efficient Oxygen Reduction in Alkaline and Acid Media. Small, 2021, 17, e2101001 11 13 Bisophysical Polistories of Management of Sites for Efficient Oxygen Reduction in Alkaline and Acid Media. Small, 2021, 17, e2101001 11 13 Bisophysical Polistories of Sulfate Ions Induced Concave Porous S-N Co-Doped Carbon Confined FeC Nanoclusters with Fe-N Sites for Efficient Oxygen Reduction in Alkaline and Acid Media. Small, 2021, 17, e2101001 11 13 Bisophysical Polistories of Sulfate Ions Induced Science Acid National Polistories of Sulfate Ions Induced	88		12	14
Sites for Efficient Oxygen Reduction in Alkaline and Acid Media. Small, 2021, 17, e2101001 11 13 Sites for Efficient Oxygen Reduction in Alkaline and Acid Media. Small, 2021, 17, e2101001 12 0 10.4 12 Sites for Efficient Oxygen Reduction in Alkaline and Acid Media. Small, 2021, 17, e2101001 10.4 12 Sites for Efficient Oxygen Reduction in Alkaline and Acid Media. Small, 2021, 17, e2101001 10.4 12 Sites for Efficient Oxygen Reduction. Carbon, 2018, 139, 1144-1151 10.4 12 Sites for Efficient Oxygen Reduction Carbon, 2018, 139, 1144-1151 Sites for Efficient Oxygen Reduction Carbon oxygen Reduction Reaction Sites for Catalyzing oxygen Reduction. Sites for Catalysts as Model for Oxygen Reduction Reaction. Advanced Science, 2021, 8, e2102209.6 12 Two-Dimensional MoS: Structural Properties, Synthesis Methods, and Regulation Strategies toward Oxygen Reduction. Micromachines, 2021, 12, 33 12 Lifting the energy density of lithium ion batteries using graphite film current collectors. Journal of Power Sources, 2020, 455, 227991 In situ constructing of ultrastable ceramic@graphene core-shell architectures as advanced metal catalyst supports toward oxygen reduction. Journal of Energy Chemistry, 2017, 26, 1160-1167 Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding	87		1.3	13
oxygen reduction. Carbon, 2018, 139, 1144-1151 84 Ultralow nitrogen-doped carbon coupled carbon-doped Co3O4 microrods with tunable electron configurations for advanced Li-storage properties. Electrochimica Acta, 2019, 327, 135059 83 Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis 2022, 1, 51-87 84 Spherical Ni S /Fe-NiP Magic Cube with Ultrahigh Water/Seawater Oxidation Efficiency Advanced Science, 2022, 9, e2104846 85 Stabilizing Fe-N-C Catalysts as Model for Oxygen Reduction Reaction. Advanced Science, 2021, 8, e2102299.6 80 Two-Dimensional MoS: Structural Properties, Synthesis Methods, and Regulation Strategies toward Oxygen Reduction. Micromachines, 2021, 12, 80 Ultralow nitrogen-doped carbon-doped Co3O4 micromachines, 2021, 12, 81 In situ constructing of ultrastable ceramic@graphene core-shell architectures as advanced metal catalyst supports toward oxygen reduction. Journal of Energy Chemistry, 2017, 26, 1160-1167 82 Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding	86		11	13
Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis 2022, 1, 51-87 Spherical Ni S/Fe-NiP Magic Cube with Ultrahigh Water/Seawater Oxidation Efficiency Advanced Science, 2022, 9, e2104846 Stabilizing Fe-N-C Catalysts as Model for Oxygen Reduction Reaction. Advanced Science, 2021, 8, e21022096 Two-Dimensional MoS: Structural Properties, Synthesis Methods, and Regulation Strategies toward Oxygen Reduction. Micromachines, 2021, 12, Lifting the energy density of lithium ion batteries using graphite film current collectors. Journal of Power Sources, 2020, 455, 227991 In situ constructing of ultrastable ceramic@graphene core-shell architectures as advanced metal catalyst supports toward oxygen reduction. Journal of Energy Chemistry, 2017, 26, 1160-1167 Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding	85		10.4	12
heterogeneous electrocatalysis 2022, 1, 51-87 Spherical Ni S /Fe-NiP Magic Cube with Ultrahigh Water/Seawater Oxidation Efficiency Advanced Science, 2022, 9, e2104846 Stabilizing Fe-N-C Catalysts as Model for Oxygen Reduction Reaction. Advanced Science, 2021, 8, e21022096 Two-Dimensional MoS: Structural Properties, Synthesis Methods, and Regulation Strategies toward Oxygen Reduction. Micromachines, 2021, 12, Jifting the energy density of lithium ion batteries using graphite film current collectors. Journal of Power Sources, 2020, 455, 227991 In situ constructing of ultrastable ceramic@graphene core-shell architectures as advanced metal catalyst supports toward oxygen reduction. Journal of Energy Chemistry, 2017, 26, 1160-1167 Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding	84		6.7	12
Science, 2022, 9, e2104846 Stabilizing Fe-N-C Catalysts as Model for Oxygen Reduction Reaction. Advanced Science, 2021, 8, e2102203.6 Two-Dimensional MoS: Structural Properties, Synthesis Methods, and Regulation Strategies toward Oxygen Reduction. Micromachines, 2021, 12, Lifting the energy density of lithium ion batteries using graphite film current collectors. Journal of Power Sources, 2020, 455, 227991 In situ constructing of ultrastable ceramic@graphene core-shell architectures as advanced metal catalyst supports toward oxygen reduction. Journal of Energy Chemistry, 2017, 26, 1160-1167 Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding	83			12
Two-Dimensional MoS: Structural Properties, Synthesis Methods, and Regulation Strategies toward Oxygen Reduction. <i>Micromachines</i> , 2021 , 12, Lifting the energy density of lithium ion batteries using graphite film current collectors. <i>Journal of Power Sources</i> , 2020 , 455, 227991 8.9 11 In situ constructing of ultrastable ceramic@graphene core-shell architectures as advanced metal catalyst supports toward oxygen reduction. <i>Journal of Energy Chemistry</i> , 2017 , 26, 1160-1167 Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding	82		13.6	12
Oxygen Reduction. <i>Micromachines</i> , 2021 , 12, Lifting the energy density of lithium ion batteries using graphite film current collectors. <i>Journal of Power Sources</i> , 2020 , 455, 227991 In situ constructing of ultrastable ceramic@graphene core-shell architectures as advanced metal catalyst supports toward oxygen reduction. <i>Journal of Energy Chemistry</i> , 2017 , 26, 1160-1167 Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding	81	Stabilizing Fe-N-C Catalysts as Model for Oxygen Reduction Reaction. <i>Advanced Science</i> , 2021 , 8, e2102	22 03 .6	12
Power Sources, 2020, 455, 227991 In situ constructing of ultrastable ceramic@graphene core-shell architectures as advanced metal catalyst supports toward oxygen reduction. Journal of Energy Chemistry, 2017, 26, 1160-1167 Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding	80		3.3	12
catalyst supports toward oxygen reduction. <i>Journal of Energy Chemistry</i> , 2017 , 26, 1160-1167 Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding	79		8.9	11
	78		12	11
	77		4.9	11

(2010-2019)

76	Tri-phase (1-x-y) Li2FeSiO4lkLiFeBO3lyLiFePO4 nested nanostructure with enhanced Li-storage properties. <i>Chemical Engineering Journal</i> , 2019 , 358, 786-793	14.7	11	
75	Boosting Nitrogen Reduction to Ammonia on FeN Sites by Atomic Spin Regulation. <i>Advanced Science</i> , 2021 , 8, e2102915	13.6	11	
74	Awakening the oxygen evolution activity of MoS2 by oxophilic-metal induced surface reorganization engineering. <i>Journal of Energy Chemistry</i> , 2021 , 62, 546-551	12	11	
73	FettoP multi-heterostructure arrays for efficient electrocatalytic water splitting. <i>Journal of Materials Chemistry A</i> ,	13	11	
72	Improved oxygen reduction activity of porous carbon materials by self-doping nitrogen derived from PVP with urea as a promoter. <i>Electrochimica Acta</i> , 2015 , 177, 73-78	6.7	10	
71	Improved carbon nanotube supported Pt nanocatalysts with lyophilization. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 4699-4703	6.7	10	
70	Enhancement of the performance of Pd nanoclusters confined within ultrathin silica layers for formic acid oxidation. <i>Nanoscale</i> , 2020 , 12, 12891-12897	7.7	10	
69	Regulative Electronic States around Ruthenium/Ruthenium Disulphide Heterointerfaces for Efficient Water Splitting in Acidic Media. <i>Angewandte Chemie</i> , 2021 , 133, 12436-12442	3.6	10	
68	Hydrothermal core-shell carbon nanoparticle films: thinning the shell leads to dramatic pH response. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 15860-5	3.6	9	
67	Ultra-Fast and In-Depth Reconstruction of Transition Metal Fluorides in Electrocatalytic Hydrogen Evolution Processes. <i>Advanced Science</i> , 2021 , e2103567	13.6	9	
66	Ru-Incorporated Nickel Diselenide Nanosheet Arrays with Accelerated Adsorption Kinetics toward Overall Water Splitting. <i>Small</i> , 2021 , e2105305	11	9	
65	Active site engineering of atomically dispersed transition metal-heteroatom-carbon catalysts for oxygen reduction. <i>Chemical Communications</i> , 2021 , 57, 7869-7881	5.8	9	
64	Poly(vinylpyrrolidone) tailored porous ceria as a carbon-free support for methanol electrooxidation. <i>Electrochimica Acta</i> , 2018 , 290, 55-62	6.7	9	
63	Trace Oxophilic Metal Induced Surface Reconstruction at Buried RuRh Cluster Interfaces Possesses Extremely Fast Hydrogen Redox Kinetics. <i>Nano Energy</i> , 2021 , 90, 106579	17.1	9	
62	Core-shell graphene@amorphous carbon composites supported platinum catalysts for oxygen reduction reaction. <i>Chinese Journal of Catalysis</i> , 2015 , 36, 490-495	11.3	8	
61	In Situ Fabrication of Tungsten Diphosphide Nanoparticles on Tungsten foil: A Hydrogen-Evolution Cathode for a Wide pH Range. <i>Energy Technology</i> , 2016 , 4, 1030-1034	3.5	8	
60	Voltammetric probing of pH at carbon nanofiberNafionDarbon nanofiber membrane electrode assemblies. <i>Electrochimica Acta</i> , 2012 , 62, 97-102	6.7	8	
59	Achieving atomically flat surfaces for LiGaO2 substrates for epitaxial growth of GaN films. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2010 , 170, 9-14	3.1	8	

58	Swapping Catalytic Active Sites from Cationic Ni to Anionic S in Nickel Sulfide Enables More Efficient Alkaline Hydrogen Generation. <i>Advanced Energy Materials</i> ,2103359	21.8	8
57	Epitaxially Grown Ru Clusters-Nickel Nitride Heterostructure Advances Water Electrolysis Kinetics in Alkaline and Seawater Media. <i>Energy and Environmental Materials</i> ,	13	8
56	A Spatially Confined gCN-Pt Electrocatalyst with Robust Stability. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 21306-21312	9.5	8
55	FeOx and Si nano-dots as dual Li-storage centers bonded with graphene for high performance lithium ion batteries. <i>Nanoscale</i> , 2015 , 7, 14344-50	7.7	7
54	Surface-dopylated carbon nanoparticles sense gas-induced pH changes. <i>Sensors and Actuators B: Chemical</i> , 2012 , 161, 184-190	8.5	7
53	Electrode processes at gas salt Pd nanoparticle glassy carbon electrode contacts: salt effects on the oxidation of formic acid vapor and the oxidation of hydrogen. <i>New Journal of Chemistry</i> , 2011 , 35, 1855	3.6	7
52	Nano mineral fiber enhanced catalyst coated membranes for improving polymer electrolyte membrane fuel cell durability. <i>Journal of Power Sources</i> , 2011 , 196, 10563-10569	8.9	7
51	Tunable Ru-Ru 2 P heterostructures with charge redistribution for efficient pH-universal hydrogen evolution. <i>Informa</i> ll Materilly,	23.1	7
50	Mapping Hydrogen Evolution Activity Trends of Intermetallic Pt-Group Silicides. ACS Catalysis, 2623-263	113.1	7
49	Anion Modulation of Pt-Group Metals and Electrocatalysis Applications. <i>Chemistry - A European Journal</i> , 2021 , 27, 12257-12271	4.8	7
48	Geometric Engineering of Porous PtCu Nanotubes with Ultrahigh Methanol Oxidation and Oxygen Reduction Capability <i>Small</i> , 2022 , e2107387	11	7
47	Structurally Ordered Pt3Co Nanoparticles Anchored on N-Doped Graphene for Highly Efficient Hydrogen Evolution Reaction. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 16938-16945	8.3	6
46	Engineering of Hollow Porous Mo C@C Nanoballs Derived From Giant Mo-Polydopamine Clusters as Highly Efficient Electrocatalysts for Hydrogen Evolution. <i>Frontiers in Chemistry</i> , 2020 , 8, 170	5	6
45	Molybdenum Carbide-PtCu Nanoalloy Heterostructures on MOF-Derived Carbon toward Efficient Hydrogen Evolution. <i>Small</i> , 2021 , 17, e2104241	11	6
44	A new strategy to access Co/N co-doped carbon nanotubes as oxygen reduction reaction catalysts. <i>Chinese Chemical Letters</i> , 2021 , 32, 535-538	8.1	6
43	In situ implanting fine ZnSe nanoparticles into N-doped porous carbon nanosheets as an exposed highly active and long-life anode for lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2021 , 876, 160135	5.7	6
42	Ionic liquid-derived FeCo alloys encapsulated in nitrogen-doped carbon framework as advanced bifunctional catalysts for rechargeable Zn-air batteries. <i>Journal of Alloys and Compounds</i> , 2022 , 908, 164	1 <i>§</i> €5	6
41	Investigation of oxygen reduction reaction and methanol tolerance on the carbon supported Pt-Pd catalysts. <i>Russian Journal of Electrochemistry</i> , 2015 , 51, 345-352	1.2	5

(2021-2014)

40	Electrochemical durability of heat-treated carbon nanospheres as catalyst supports for proton exchange membrane fuel cells. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 7027-31	1.3	5	
39	Imparting pH- and small molecule selectivity to nano-Pd catalysts via hydrothermal wrapping with chitosan. <i>Electrochimica Acta</i> , 2013 , 110, 663-669	6.7	5	
38	Vertically mounting molybdenum disulfide nanosheets on dimolybdenum carbide nanomeshes enables efficient hydrogen evolution. <i>Nano Research</i> ,1	10	5	
37	Defective RuO2/TiO2 nano-heterostructure advances hydrogen production by electrochemical water splitting. <i>Chemical Engineering Journal</i> , 2022 , 431, 134072	14.7	5	
36	NiFe LDH/CuO nanosheet: a sheet-on-sheet strategy to boost the active site density towards oxygen evolution reaction <i>RSC Advances</i> , 2020 , 10, 27424-27427	3.7	5	
35	Synthesis, Modification, and Lithium-Storage Properties of Spinel LiNi0.5Mn1.5O4. <i>ChemElectroChem</i> , 2021 , 8, 608-624	4.3	5	
34	Concave Pt-Zn Nanocubes with High-Index Faceted Pt Skin as Highly Efficient Oxygen Reduction Catalyst <i>Advanced Science</i> , 2022 , e2200147	13.6	5	
33	Facile Synthesis of \(\text{HMnO2} \) with a 3D Staghorn Coral-like Micro-Structure Assembled by Nano-Rods and Its Application in Electrochemical Supercapacitors. <i>Applied Sciences (Switzerland)</i> , 2017 , 7, 511	2.6	4	
32	In Situ and Ex Situ Studies on the Degradation of Pd/C Catalyst for Proton Exchange Membrane Fuel Cells. <i>Journal of Fuel Cell Science and Technology</i> , 2014 , 11,		4	
31	Carbon-embedded carbon nanotubes as supports of polymer electrolyte membrane fuel cell catalysts. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 6929-33	1.3	4	
30	Ultralow Ru-assisted and vanadium-doped flower-like CoP/Ni2P heterostructure for efficient water splitting in alkali and seawater. <i>Journal of Materials Chemistry A</i> ,	13	4	
29	Metal-organic frameworks derived RuP2 with yolk-shell structure and efficient performance for hydrogen evolution reaction in both acidic and alkaline media. <i>Applied Catalysis B: Environmental</i> , 2022 , 305, 121043	21.8	4	
28	Ultrafine IrNi Bimetals Encapsulated in Zeolitic Imidazolate Frameworks-Derived Porous N-Doped Carbon for Boosting Oxygen Evolution in Both Alkaline and Acidic Electrolytes. <i>Advanced Materials Interfaces</i> , 2020 , 7, 2001145	4.6	4	
27	Highly Reduced Graphene Assembly Film as Current Collector for Lithium Ion Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 8635-8641	8.3	4	
26	Enhancing the Specific Activity of Metal Catalysts Toward Oxygen Reduction by Introducing Proton Conductor. <i>Nano</i> , 2016 , 11, 1650055	1.1	4	
25	Coupling low platinum and tungsten carbide supported on ZIFs-Derived porous carbon for efficient hydrogen evolution. <i>Electrochimica Acta</i> , 2019 , 328, 135077	6.7	4	
24	The assembling principle and strategies of high-density atomically dispersed catalysts. <i>Chemical Engineering Journal</i> , 2021 , 417, 127917	14.7	4	
23	Potassium-Ion Activating Formation of FeNC Moiety as Efficient Oxygen Electrocatalyst for Zn-Air Batteries. <i>ChemElectroChem</i> , 2021 , 8, 1298-1306	4.3	4	

22	Single-crystal high-nickel layered cathodes for lithium-ion batteries: advantages, mechanism, challenges and approaches. <i>Current Opinion in Electrochemistry</i> , 2022 , 31, 100831	7.2	4
21	Constructing a Rod-like CoFeP@Ru Heterostructure with Additive Active Sites for Water Splitting. <i>ChemCatChem</i> , 2020 , 12, 5149-5155	5.2	3
20	Decoration of carbon nanotube with SiO2 nanoparticles to improve polyelectrolyte membrane performance. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 10896-9	1.3	3
19	A modified integrated model of the internal structure of Chinese cultured pearls. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2011 , 26, 510-513	1	3
18	Study of Te nanoprecipitates in CdZnTe crystals. <i>Journal of Materials Research</i> , 2010 , 25, 1298-1303	2.5	3
17	Surface Engineering and Trace Cobalt Doping Suppress Overall Li/Ni Mixing of Li-rich Mn-based Cathode Materials <i>ACS Applied Materials & Materials</i> (2022),	9.5	3
16	Cation/Anion Dual-Vacancy Pair Modulated Atomically-Thin Se -Co S Nanosheets with Extremely High Water Oxidation Performance in Ultralow-Concentration Alkaline Solutions <i>Small</i> , 2022 , e210809)7 ¹¹	2
15	Anion-modulated Molybdenum Oxide Enclosed Ruthenium Nano-capsules with Almost the Same Water Splitting Capability in Acidic and Alkaline Media. <i>Nano Energy</i> , 2022 , 107445	17.1	2
14	Chitosan-Based Hydrothermal Nanocarbon: Core-Shell Characteristics and Composite Electrodes. <i>Electroanalysis</i> , 2012 , 24, n/a-n/a	3	1
13	Reduced water dissociation barrier on constructing Pt-Co/CoOx interface for alkaline hydrogen evolution. <i>Nano Research</i> ,1	10	1
12	Metastable five-fold twinned Ru incorporated Cu nanosheets with Pt-like hydrogen evolution kinetics. <i>Chemical Engineering Journal</i> , 2022 , 428, 131099	14.7	1
11	Duetting electronic structure modulation of Ru atoms in RuSe2@NC enables more moderate H* adsorption and water dissociation for hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 7637-7644	13	1
10	Polymetallic Phosphides evolved from MOF and LDH dual-precursors for Robust Oxygen Evolution Reaction in Alkaline and Seawater Media. <i>Materials Today Physics</i> , 2022 , 100684	8	1
9	Inhibiting Mn Migration by Sb-Pinning Transition Metal Layers in Lithium-Rich Cathode Material for Stable High-Capacity Properties <i>Small</i> , 2022 , e2200713	11	1
8	Janus-faced graphene substrate stabilizes lithium metal anode. <i>Chemical Engineering Journal</i> , 2021 , 433, 133561	14.7	0
7	Tuning the FeN4 sites by introducing BiD bonds in a FeND system for promoting the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 664-671	13	O
6	Atomically dispersed dual Fe centers on nitrogen-doped bamboo-like carbon nanotubes for efficient oxygen reduction. <i>Nano Research</i> ,1	10	0
5	Phosphorus-induced reconstruction of Sub-2[hm ultrafine spinel type CoO nanosheets for efficient water oxidation. <i>Journal of Alloys and Compounds</i> , 2022 , 889, 161704	5.7	Ο

LIST OF PUBLICATIONS

- Dual anion-doped porous carbon embraced TiO2 nanocrystals with long-term cycling performance for sodium ion batteries. *Journal of Alloys and Compounds*, **2022**, 906, 164321
- Solid-gas Phase Preparation Method for Porous Molybdenum Trioxide. *Journal Wuhan University of Technology, Materials Science Edition*, **2020**, 35, 495-500
- 1
- Single Cell Performance of Catalyst Coated Membrane Based on Superthin Proton Exchange Membrane **2006**, 329
- Electrostatic self-assembly Pd particles on NafionImembrane surface to reduce methanol crossover. *Science Bulletin*, **2005**, 50, 377-379