Marina Cabrini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9049107/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of the corrosion behaviour of untreated and chemically treated pure magnesium in simulated body fluid. Journal of Adhesion Science and Technology, 2023, 37, 1789-1805.	1.4	1
2	Corrosion Activity of Carbon Steel B450C and Low Chromium Ferritic Stainless Steel 430 in Chloride-Containing Cement Extract Solution. Metals, 2022, 12, 150.	1.0	3
3	Understanding the Corrosion Behavior of the AZ91D Alloy in Simulated Body Fluid through the Use of Dynamic EIS. ACS Omega, 2022, 7, 11929-11938.	1.6	7
4	The Improvement of Durability of Reinforced Concretes for Sustainable Structures: A Review on Different Approaches. Materials, 2022, 15, 2728.	1.3	15
5	Corrosion Activity of Carbon Steel B450C and Low Chromium Ferritic Stainless Steel 430 in Cement Extract Solution. Buildings, 2021, 11, 220.	1.4	5
6	Effect of Heat Treatment on Microstructure and Selective Corrosion of LPBF-AlSi10Mg by Means of SKPFM and Exo-Electron Emission. Materials, 2021, 14, 5602.	1.3	5
7	Stress Corrosion Cracking of Additively Manufactured Alloy 625. Materials, 2021, 14, 6115.	1.3	5
8	Hydrogen Permeation in X65 Steel under Cyclic Loading. Materials, 2020, 13, 2309.	1.3	9
9	Stress enhanced intergranular corrosion of friction stir welded AA2024-T3. Engineering Failure Analysis, 2020, 111, 104483.	1.8	10
10	Inhibition Effect of Tartrate Ions on the Localized Corrosion of Steel in Pore Solution at Different Chloride Concentrations. Buildings, 2020, 10, 105.	1.4	7
11	Effect of Load on the Corrosion Behavior of Friction Stir Welded AA 7075-T6 Aluminum Alloy. Materials, 2020, 13, 2600.	1.3	5
12	Stress Corrosion Cracking of Friction Stir-Welded AA-2024 T3 Alloy. Materials, 2020, 13, 2610.	1.3	11
13	Evaluation of Corrosion Resistance of Alloy 625 Obtained by Laser Powder Bed Fusion. Journal of the Electrochemical Society, 2019, 166, C3399-C3408.	1.3	24
14	Hydrogen diffusion in low alloy steels under cyclic loading. Corrosion Reviews, 2019, 37, 459-467.	1.0	8
15	Microstructure and Selective Corrosion of Alloy 625 Obtained by Means of Laser Powder Bed Fusion. Materials, 2019, 12, 1742.	1.3	16
16	Hydrogen Embrittlement Evaluation of Micro Alloyed Steels by Means of J-Integral Curve. Materials, 2019, 12, 1843.	1.3	10
17	Statistical approach for electrochemical evaluation of the effect of heat treatments on the corrosion resistance of AlSi10Mg alloy by laser powder bed fusion. Electrochimica Acta, 2019, 305, 459-466.	2.6	39
18	Corrosion behavior of AlSi10Mg alloy produced by laser powder bed fusion under chloride exposure. Corrosion Science, 2019, 152, 101-108.	3.0	41

MARINA CABRINI

#	Article	IF	CITATIONS
19	Corrosion resistance in chloride solution of the AlSi10Mg alloy obtained by means of LPBF. Surface and Interface Analysis, 2019, 51, 1159-1164.	0.8	15
20	Hydrogen Embrittlement and Diffusion in High Strength Low Alloyed Steels with Different Microstructures. Insight - Material Science, 2019, 2, 8.	0.2	0
21	Effects of thiosulphates and sulphite ions on steel corrosion. Corrosion Science, 2018, 135, 158-166.	3.0	9
22	The influence of process parameters on mechanical properties and corrosion behavior of friction stir welded aluminum joints. Journal of Manufacturing Processes, 2018, 35, 1-15.	2.8	47
23	Binders alternative to Portland cement and waste management for sustainable construction—part 1. Journal of Applied Biomaterials and Functional Materials, 2018, 16, 186-202.	0.7	57
24	Corrosion Behavior of Heat-Treated AlSi10Mg Manufactured by Laser Powder Bed Fusion. Materials, 2018, 11, 1051.	1.3	54
25	Effect of Hot Mill Scale on Hydrogen Embrittlement of High Strength Steels for Pre-Stressed Concrete Structures. Metals, 2018, 8, 158.	1.0	6
26	Binders alternative to Portland cement and waste management for sustainable construction – Part 2. Journal of Applied Biomaterials and Functional Materials, 2018, 16, 207-221.	0.7	45
27	The Effects of Process Parameters on Mechanical Properties and Corrosion Behavior in Friction Stir Welding of Aluminum Alloys. Procedia Engineering, 2017, 183, 270-276.	1.2	19
28	Materials selection for dew-point corrosion in geothermal fluids containing acid chloride. Geothermics, 2017, 69, 139-144.	1.5	8
29	Electrochemical investigation of corrosion and repassivation of structural aluminum alloys under permanent load in bending. Corrosion Reviews, 2017, 35, 225-239.	1.0	9
30	Environmentally assisted cracking of pipeline steels in CO2 containing environment at near-neutral pH. Corrosion Reviews, 2017, 35, 309-323.	1.0	2
31	The influence of process parameters on mechanical properties and corrosion behaviour of friction stir welded aluminum joints. Procedia Engineering, 2017, 207, 591-596.	1.2	13
32	Study of the Corrosion Resistance of Austenitic Stainless Steels during Conversion of Waste to Biofuel. Materials, 2017, 10, 325.	1.3	10
33	Corrosion Behavior of Carbon Steels in CCTS Environment. International Journal of Corrosion, 2016, 2016, 1-7.	0.6	6
34	Corrosion resistance of direct metal laser sintering AlSiMg alloy. Surface and Interface Analysis, 2016, 48, 818-826.	0.8	50
35	Effect of heat treatment on corrosion resistance of DMLS AlSi10Mg alloy. Electrochimica Acta, 2016, 206, 346-355.	2.6	105

Pipeline Steels: Hydrogen Diffusion and Environmentally-Assisted Cracking. , 2016, , 2547-2559.

0

MARINA CABRINI

#	Article	lF	CITATIONS
37	Steel damaging in flowing mortar. Corrosion Engineering Science and Technology, 2016, 51, 596-605.	0.7	3
38	Evaluation of corrosion resistance of Al–10Si–Mg alloy obtained by means of Direct Metal Laser Sintering. Journal of Materials Processing Technology, 2016, 231, 326-335.	3.1	102
39	Effect of Organic Inhibitors on Chloride Corrosion of Steel Rebars in Alkaline Pore Solution. Journal of Chemistry, 2015, 2015, 1-10.	0.9	32
40	Environmentally assisted cracking and hydrogen diffusion in traditional and high-strength pipeline steels. Corrosion Reviews, 2015, 33, 529-545.	1.0	16
41	Cyclic voltammetry evaluation of inhibitors for localised corrosion in alkaline solutions. Electrochimica Acta, 2014, 124, 156-164.	2.6	46
42	Hydrogen embrittlement behavior of HSLA line pipe steel under cathodic protection. Corrosion Reviews, 2011, 29, .	1.0	35
43	Evaluation of the corrosion inhibition of salts of organic acids in alkaline solutions and chloride contaminated concrete. Materials and Corrosion - Werkstoffe Und Korrosion, 2011, 62, 187-195.	0.8	34
44	Hydrogen-embrittlement resistance of X100 steels for long-distance high-pressure pipelines. , 2008, , 291-301.		2
45	Effect of microstructure on the hydrogen-embrittlement behaviour of HSLA steels under cathodic protection. , 2008, , 279-289.		2
46	Evaluation of the resistance to hydrogen embrittlement by the slow bending test. , 2008, , 493-502.		3
47	Hydrogen Diffusion and EAC of Pipeline Steels Under Cathodic Protection. , 2006, , 1005-1006.		5
48	Photoelectrochemical visualization in real-time of hydrogen distribution in plastic regions of low-carbon steel. Corrosion Science, 1999, 41, 203-208.	3.0	17
49	Effect of the Heat-Affected Zones on Hydrogen Permeation and Embrittlement of Low-Carbon Steels. Materials Science Forum, 1998, 289-292, 1257-1266.	0.3	5
50	Evaluation of the Hydrogen Embrittlement Behaviour by Means of the Permeation Current Measure in Slow Strain Rate Conditions of a Micro-Alloyed Steel. Materials Science Forum, 1998, 289-292, 1245-1256.	0.3	5
51	Effect of different surface finishing and of hydroxyapatite coatings on passive and corrosion current of Ti6Al4V alloy in simulated physiological solution. Biomaterials, 1997, 18, 783-787.	5.7	88
52	Increasing of the corrosion resistance of the Ti6Al4V alloy by high thickness anodic oxidation. Journal of Materials Science: Materials in Medicine, 1992, 3, 408-412.	1.7	88
53	Mechanical Characterization of Hydroxiapatite Micro/Macro-Porous Ceramics Obtained by Means of Innovative Gel-Casting Process. Key Engineering Materials, 0, 417-418, 565-568.	0.4	12
54	Fatigue-Corrosion of High Strength Steels in Synthetic Seawater under Cathodic Protection. Key Engineering Materials, 0, 841, 294-299.	0.4	0

#	Article	IF	CITATIONS
55	Role Of Localized Attacks In NN-SCC On Gas Pipelines. , 0, , 75-84.		0
56	Durability of Mortars Manufactured with Low-Carbon Binders Exposed to Calcium Chloride-Based De-Icing Salts. Key Engineering Materials, 0, 919, 151-160.	0.4	1