Vincent Noel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9049089/publications.pdf

Version: 2024-02-01

77 papers	2,339 citations	185998 28 h-index	233125 45 g-index
78	78	78	3138
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nucleation and growth of poly(3,4-ethylenedioxythiophene) in acetonitrile on platinum under potentiostatic conditions. Journal of Electroanalytical Chemistry, 1999, 472, 103-111.	1.9	208
2	Detection of Glutamate and Acetylcholine with Organic Electrochemical Transistors Based on Conducting Polymer/Platinum Nanoparticle Composites. Advanced Materials, 2014, 26, 5658-5664.	11.1	142
3	Electrolytic Gated Organic Field-Effect Transistors for Application in Biosensors—A Review. Electronics (Switzerland), 2016, 5, 9.	1.8	119
4	Inkjetâ€Printing: A New Fabrication Technology for Organic Transistors. Advanced Materials Technologies, 2017, 2, 1700063.	3.0	106
5	Grafting of Diazonium Salts on Surfaces: Application to Biosensors. Biosensors, 2020, 10, 4.	2.3	102
6	Label-free electrochemical detection of prostate-specific antigen based on nucleic acid aptamer. Biosensors and Bioelectronics, 2015, 68, 49-54.	5. 3	76
7	Tunable Electrochemical Switches Based on Ultrathin Organic Films. Journal of the American Chemical Society, 2007, 129, 1890-1891.	6.6	75
8	The development of a reagentless lactate biosensor based on a novel conducting polymer. Bioelectrochemistry, 2006, 68, 218-226.	2.4	56
9	Label-free DNA electrochemical sensor based on a PNA-functionalized conductive polymer. Talanta, 2008, 76, 206-210.	2.9	55
10	Investigations of the steric effect on electrochemical transduction in a quinone-based DNA sensor. Biosensors and Bioelectronics, 2007, 22, 3126-3131.	5. 3	53
11	Nanometric Layers for Direct, Signal-On, Selective, and Sensitive Electrochemical Detection of Oligonucleotides Hybridization. Journal of the American Chemical Society, 2008, 130, 15752-15753.	6.6	52
12	DNA Electrochemical Sensor Based on Conducting Polymer: Dependence of the "Signal-On―Detection on the Probe Sequence Localization. Analytical Chemistry, 2005, 77, 3351-3356.	3.2	51
13	Electrochemical impedance spectroscopy of an oxidized poly(3,4-ethylenedioxythiophene) in propylene carbonate solutions. Journal of Electroanalytical Chemistry, 2003, 558, 41-48.	1.9	47
14	Electrochemical Switches Based on Ultrathin Organic Films: From Diode-like Behavior to Charge Transfer Transparency. Journal of Physical Chemistry C, 2008, 112, 18638-18643.	1.5	46
15	Simple and Highly Enantioselective Electrochemical Aptamer-Based Binding Assay for Trace Detection of Chiral Compounds. Analytical Chemistry, 2012, 84, 5415-5420.	3.2	46
16	Comparison of Electrochemical Immunosensors and Aptasensors for Detection of Small Organic Molecules in Environment, Food Safety, Clinical and Public Security. Biosensors, 2016, 6, 7.	2.3	45
17	Selectivity and sensitivity of a reagentless electrochemical DNA sensor studied by square wave voltammetry and fluorescence. Bioelectrochemistry, 2006, 69, 172-179.	2.4	42
18	Electrochemical kinetic analysis of a 1,4-hydroxynaphthoquinone self-assembled monolayer. Journal of Electroanalytical Chemistry, 2008, 622, 37-43.	1.9	38

#	Article	IF	Citations
19	Peptide-modified electrolyte-gated organic field effect transistor. Application to Cu2+ detection. Biosensors and Bioelectronics, 2019, 127, 118-125.	5.3	36
20	Composite films of iron(III) hexacyanoferrate and poly(3,4-ethylenedioxythiophene): electrosynthesis and properties. Journal of Electroanalytical Chemistry, 2000, 489, 46-54.	1.9	35
21	Challenges, Prospects, and Emerging Applications of Inkjetâ€Printed Electronics: A Chemist's Point of View. Angewandte Chemie - International Edition, 2022, 61, .	7.2	35
22	Cyclic voltammetric studies of the relaxation processes during the oxidation of poly(3,4-ethylenedioxythiophene) in propylene carbonate solution. Journal of Electroanalytical Chemistry, 2003, 542, 33-38.	1.9	34
23	Molecular Dynamics Simulation of a RNA Aptasensor. Journal of Physical Chemistry B, 2017, 121, 4071-4080.	1.2	34
24	Label-free and reagentless electrochemical detection of PCR fragments using self-assembled quinone derivative monolayer: Application to Mycobacterium tuberculosis. Biosensors and Bioelectronics, 2012, 32, 163-168.	5.3	33
25	Grafting of a peptide probe for Prostate-Specific Antigen detection using diazonium electroreduction and click chemistry. Biosensors and Bioelectronics, 2016, 81, 131-137.	5.3	33
26	Triggering the Electrolyte-Gated Organic Field-Effect Transistor output characteristics through gate functionalization using diazonium chemistry: Application to biodetection of 2,4-dichlorophenoxyacetic acid. Biosensors and Bioelectronics, 2018, 113, 32-38.	5. 3	33
27	Multianalytical Study of the Binding between a Small Chiral Molecule and a DNA Aptamer: Evidence for Asymmetric Steric Effect upon 3′- versus 5′-End Sequence Modification. Analytical Chemistry, 2016, 88, 11963-11971.	3.2	31
28	Switchable Hydrogel-Gated Organic Field-Effect Transistors. Langmuir, 2018, 34, 3686-3693.	1.6	30
29	Hydroxynaphthoquinone Ultrathin Films Obtained by Diazonium Electroreduction: Toward Design of Biosensitive Electroactive Interfaces. Analytical Chemistry, 2010, 82, 3523-3530.	3.2	29
30	Functionalization of single-walled carbon nanotubes for direct and selective electrochemical detection of DNA. Analyst, The, 2011, 136, 1023-1028.	1.7	29
31	Versatile transduction scheme based on electrolyte-gated organic field-effect transistor used as immunoassay readout system. Biosensors and Bioelectronics, 2017, 92, 215-220.	5. 3	27
32	Enzyme-less electrochemical displacement heterogeneous immunosensor for diclofenac detection. Biosensors and Bioelectronics, 2017, 97, 246-252.	5. 3	27
33	Recent Advances in Skin Chemical Sensors. Sensors, 2019, 19, 4376.	2.1	26
34	Characterization of the unstability of 4-mercaptoaniline capped platinum nanoparticles solution by combining LB technique and X-ray photoelectron spectroscopy. Applied Surface Science, 2006, 252, 2422-2431.	3.1	25
35	Kinetic Rotating Droplet Electrochemistry: A Simple and Versatile Method for Reaction Progress Kinetic Analysis in Microliter Volumes. Journal of the American Chemical Society, 2013, 135, 14215-14228.	6.6	25
36	Investigation of the charge effect on the electrochemical transduction in a quinone-based DNA sensor. Electrochimica Acta, 2008, 54, 346-351.	2.6	23

#	Article	lF	Citations
37	Redox-assisted hydrogen bonding within interpenetrating conducting polymer networks for charge-storage materials. Electrochemistry Communications, 2012, 19, 32-35.	2.3	23
38	Interpenetrating organic conducting polymer composites based on polyaniline and poly(3,4-ethylenedioxythiophene) from sequential electropolymerization. Journal of Electroanalytical Chemistry, 2005, 585, 157-166.	1.9	22
39	All-Inkjet-Printed Graphene-Gated Organic Electrochemical Transistors on Polymeric Foil as Highly Sensitive Enzymatic Biosensors. ACS Applied Nano Materials, 2022, 5, 1664-1673.	2.4	22
40	General approach for electrochemical detection of persistent pharmaceutical micropollutants: Application to acetaminophen. Biosensors and Bioelectronics, 2015, 72, 205-210.	5.3	20
41	Simultaneous Electroreduction of Different Diazonium Salts for Direct Electrochemical DNA Biosensor Development. Electrochimica Acta, 2014, 140, 49-58.	2.6	19
42	Fractal dimension of the active zone for a p-doped poly(3,4-ethylenedioxythiophene) modified electrode towards a ferrocene probe. Journal of Electroanalytical Chemistry, 2002, 521, 107-116.	1.9	17
43	Design of a new electrogenerated polyquinone film substituted with glutathione. Towards direct electrochemical biosensors. Talanta, 2010, 80, 1318-1325.	2.9	17
44	Direct and rapid electrochemical immunosensing system based on a conducting polymer. Talanta, 2010, 82, 608-612.	2.9	17
45	Medium Effects on the Nucleation and Growth Mechanisms during the Redox Switching Dynamics of Conducting Polymers: Case of Poly(3,4-ethylenedioxythiophene). Journal of Physical Chemistry B, 2011, 115, 205-216.	1.2	17
46	Applications of carbon nanotubes to electrochemical DNA sensors: a new strategy to make direct and selective hybridization detection from SWNTs. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2010, 1, 045011.	0.7	16
47	Electrolyte-gated organic field-effect transistors (EGOFETs) as complementary tools to electrochemistry for the study of surface processes. Electrochemistry Communications, 2019, 98, 43-46.	2.3	16
48	Anomalous diffusion on the active zone of p-doped poly(3,4-ethylenedioxythiophene) modified electrodes. Journal of Electroanalytical Chemistry, 2003, 556, 35-42.	1.9	15
49	A DNA hydrogel gated organic field effect transistor. Organic Electronics, 2019, 75, 105402.	1.4	15
50	Nanocomposite Langmuir–Blodgett films based on crown derivatized platinum nanoparticles: Synthesis, characterization, and electrical properties. Thin Solid Films, 2008, 517, 755-763.	0.8	14
51	Electrocatalytic (Bio)Nanostructures Based on Polymer-Grafted Platinum Nanoparticles for Analytical Purpose. ACS Applied Materials & Samp; Interfaces, 2016, 8, 14747-14755.	4.0	13
52	Self-Assembly of Nanoparticles from Evaporating Sessile Droplets: Fresh Look into the Role of Particle/Substrate Interaction. Langmuir, 2020, 36, 11411-11421.	1.6	13
53	Gold nanoparticle-based eco-friendly ink for electrode patterning on flexible substrates. Electrochemistry Communications, 2021, 123, 106918.	2.3	13
54	Monitoring photosynthetic microorganism activity with an electrolyte-gated organic field effect transistor. Biosensors and Bioelectronics, 2020, 157, 112166.	5.3	12

#	Article	IF	Citations
55	Electrochemistry at capped platinum nanoparticle Langmuir Blodgett films: A study of the influence of platinum amount and of number of LB layers. Electrochimica Acta, 2007, 52, 2285-2293.	2.6	10
56	Electrochemical investigation of interactions between quinone derivatives and single stranded DNA. Electrochimica Acta, 2012, 85, 588-593.	2.6	9
57	Rational Design of a Redox‣abeled Chiral Target for an Enantioselective Aptamerâ€Based Electrochemical Binding Assay. Chemistry - A European Journal, 2014, 20, 2953-2959.	1.7	9
58	Nernst–Planck–Poisson analysis of electrolyte-gated organic field-effect transistors. Journal Physics D: Applied Physics, 2021, 54, 415101.	1.3	9
59	Waterâ€soluble polymerâ€grafted platinum nanoparticles for the subsequent binding of enzymes. synthesis and SANS. Journal of Polymer Science Part A, 2012, 50, 289-296.	2.5	8
60	Morphological Control of Linear Particle Deposits from the Drying of Inkjet-Printed Rivulets. Journal of Physical Chemistry Letters, 2020, 11, 4559-4563.	2.1	8
61	Self-Assembly of Gold Nanoparticles with Oppositely Charged, Long, Linear Chains of Periodic Copolymers. Journal of Physical Chemistry B, 2020, 124, 900-908.	1.2	7
62	All-Inkjet-Printed Humidity Sensors for the Detection of Relative Humidity in Air and Soil—Towards the Direct Fabrication on Plant Leaves. MRS Advances, 2020, 5, 965-973.	0.5	7
63	Algae-functionalized hydrogel-gated organic field-effect transistor. Application to the detection of herbicides. Electrochimica Acta, 2021, 372, 137881.	2.6	7
64	Copper Nanoparticles with a Tunable Size: Implications for Plasmonic Catalysis. ACS Applied Nano Materials, 2022, 5, 2839-2847.	2.4	7
65	Hybrid platinum nanoparticle ensemble for the electrocatalytic oxidation of H2O2: Toward nanostructured biosensor design. Electrochemistry Communications, 2013, 28, 118-121.	2.3	6
66	Optimization of Experimental Parameters to Explore Smallâ€Ligand/Aptamer Interactions through Use of ¹ Hâ€NMR Spectroscopy and Molecular Modeling. Chemistry - A European Journal, 2015, 21, 15740-15748.	1.7	6
67	Printed Dielectrophoretic Electrodeâ€Based Continuous Flow Microfluidic Systems for Particles 3Dâ€Trapping. Particle and Particle Systems Characterization, 2021, 38, 2000235.	1.2	6
68	Electronic transfer through Langmuir–Blodgett layers of capped platinum nanoparticles: An electrochemical approach. Electrochimica Acta, 2006, 51, 6076-6080.	2.6	5
69	Electrochemical generation of stable copper nanowires with quantized conductance in DNA media. Electrochemistry Communications, 2011, 13, 272-274.	2.3	5
70	An electroactive conjugated oligomer for a direct electrochemical DNA sensor. Synthetic Metals, 2012, 162, 1496-1502.	2.1	4
71	Nanodomains of Juglonethiol on Au(111): Relationship between Domain Size and Electrochemical Properties. Journal of Physical Chemistry C, 2015, 119, 29015-29026.	1.5	4
72	Computational Studies of a DNA-Based Aptasensor: toward Theory-Driven Transduction Improvement. Journal of Physical Chemistry B, 2021, 125, 9499-9506.	1.2	3

VINCENT NOEL

#	Article	IF	CITATIONS
73	DNA and PNA Probes for DNA Detection in Electroanalytical Systems. RNA Technologies, 2015, , 47-80.	0.2	2
74	Challenges, Prospects, and Emerging Applications of Inkjetâ€Printed Electronics: A Chemist's Point of View. Angewandte Chemie, 0, , .	1.6	2
75	Label Free DNA Sensors Using PNA Probe Sequence and Electroactive Self-Assembled Monolayer Application to PCR Fragments of Mycobacterium Tuberculosis. ECS Meeting Abstracts, 2011, , .	0.0	O
76	DNA for Non-nucleic Acid Sensing. RNA Technologies, 2015, , 81-106.	0.2	0
77	Driving Electrolyte-Gated Organic Field-Effect Transistors with Redox Reactions. , 2020, 60, .		0