
Tomasz Dudziak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9049049/publications.pdf

Version: 2024-02-01

TOMASZ DUDZIAK

#	Article	IF	CITATIONS
1	Fireside Corrosion Behavior of HVOF and Plasma-Sprayed Coatings in Advanced Coal/Biomass Co-Fired Power Plants. Journal of Thermal Spray Technology, 2013, 22, 797-807.	1.6	50
2	Phase Investigations Under Steam Oxidation Process at 800°C for 1000Âh of Advanced Steels and Ni-Based Alloys. Oxidation of Metals, 2017, 87, 139-158.	1.0	34
3	Effect of Steam Flow Rate and Sample Orientation on Steam Oxidation of Ferritic and Austenitic Steels at 650 and 700°C. Oxidation of Metals, 2013, 79, 473-483.	1.0	33
4	Steam oxidation of TP347HFG, super 304H and HR3C – analysis of significance of steam flowrate and specimen surface finish. Corrosion Engineering Science and Technology, 2015, 50, 272-282.	0.7	23
5	Fireside corrosion degradation of ferritic alloys at 600°C in oxy-fired conditions. Corrosion Science, 2014, 79, 184-191.	3.0	21
6	Analysis of High Temperature Steam Oxidation of Superheater Steels Used in Coal Fired Boilers. Oxidation of Metals, 2016, 85, 171-187.	1.0	20
7	Microstructure and Mechanical Properties of Inconel 740H after Long-Term Service. Materials, 2018, 11, 2130.	1.3	20
8	Long-term oxidation of newly developed HIPIMS and PVD coatings with neural network prediction modelling. Corrosion Science, 2013, 69, 322-337.	3.0	17
9	Steam Oxidation Behavior of Advanced Steels and Ni-Based Alloys at 800°C. Journal of Materials Engineering and Performance, 2017, 26, 1044-1056.	1.2	16
10	Fireside corrosion degradation of 15Mo3, T22, T23 & T91 in simulated coal-biomass co-fired environment. Materials and Corrosion - Werkstoffe Und Korrosion, 2015, 66, 839-850.	0.8	15
11	High Temperature Oxidation Resistance of CrAlYN-Coated Ti45Al8Nb. Oxidation of Metals, 2011, 75, 359-376.	1.0	12
12	Neural network modelling studies of steam oxidised kinetic behaviour of advanced steels and Ni-based alloys at 800â€Â°C for 3000â€h. Corrosion Science, 2018, 133, 94-111.	3.0	12
13	Sulphidation/oxidation behaviour of TiAlCr and Al2Au coated Ti45Al8Nb alloy at 750°C. Corrosion Science, 2009, 51, 1189-1196.	3.0	11
14	High-Temperature Performance of Ferritic Steels in Fireside Corrosion Regimes: Temperature and Deposits. Journal of Materials Engineering and Performance, 2017, 26, 84-93.	1.2	10
15	Characterisation of oxide scales developed on high temperature resistant alloys in pure steam environments. Materials at High Temperatures, 2012, 29, 210-218.	0.5	9
16	Steam Oxidation Resistance of Advanced Steels and Ni-Based Alloys at 700°C for 1000Âh. Oxidation of Metals, 2018, 89, 755-779.	1.0	9
17	Protective coatings for high-temperature steam oxidation in coal-fired power plants. Surface and Coatings Technology, 2019, 369, 127-141.	2.2	8
18	Defects of SiC nanowires studied by STM and STS. Applied Surface Science, 2010, 256, 4771-4776.	3.1	7

Tomasz Dudziak

#	Article	IF	CITATIONS
19	Metal Loss of Steam-Oxidized Alloys after Exposures at 675°C and 725°C for 500 Hours. High Temperature Materials and Processes, 2015, 34, 783-798.	0.6	7
20	Steam oxidation resistance and performance of newly developed coatings for Haynes® 282® Ni-based alloy. Corrosion Science, 2018, 138, 326-339.	3.0	7
21	Multilayered Coatings for High-Temperature Steam Oxidation: TGA Studies up to 1000°C. Journal of Materials Engineering and Performance, 2018, 27, 4317-4335.	1.2	7
22	Sulphidation of Low-Alloyed Steels Used in Power Industry. Oxidation of Metals, 2019, 92, 379-399.	1.0	7
23	Paper: Effect of aging process on steam oxidation behaviour of austenitic steels Super 304H and HR3C. International Journal of Pressure Vessels and Piping, 2021, 191, 104344.	1.2	7
24	Effects of Longâ€Term Ageing at High Temperatures on Oxide Scale Development and Evolution of Austenitic Steels Microstructure. Steel Research International, 2020, 91, 1900595.	1.0	6
25	Scale mass gain, morphology and phase composition of air and steam oxidized electron beam melted and cast Ti–48Al–2Nb-0.7Cr-0.3Si alloys. Intermetallics, 2022, 145, 107553.	1.8	6
26	High temperature coatings from post processing Fe-based chips and Ni-based alloys as a solution for critical raw materials. IOP Conference Series: Materials Science and Engineering, 2018, 329, 012010.	0.3	5
27	High temperature air oxidation resistance of TiAlCr-Y coated Ti45Al8Nb between 750 °C – 950 °C. Open Engineering, 2013, 3, .	0.7	4
28	Chlorine Corrosion Degradation of Low Alloyed Ferritic Steels in Temperature Range 450–550°C. Oxidation of Metals, 2016, 85, 647-664.	1.0	4
29	The Influence of Fabrication Process on the Initial Stages of Steam Oxidation Performed on Haynes® 282® Alloy at 760°C. Journal of Materials Engineering and Performance, 2017, 26, 239-249.	1.2	4
30	Characterization of the as-cast microstructure and selected properties of the X-40 Co-based superalloy produced via lost-wax casting. Archives of Civil and Mechanical Engineering, 2022, 22, .	1.9	4
31	Impact specimen geometry on T23 and TP347HFG steels behaviour during steam oxidation at harsh conditions. Corrosion Engineering Science and Technology, 2017, 52, 46-53.	0.7	3
32	Internal Oxidation Prediction by Cellular Automata Approach in Energy Materials at High Temperatures. Advanced Engineering Materials, 2019, 21, 1801142.	1.6	3
33	Enhanced sulphidation/oxidation resistance of Ti–45 <scp>A</scp> l–8 <scp>N</scp> b alloy by nanostructured Cr <scp>A</scp> l <scp>YN</scp> l <scp>C</scp> r <scp>N</scp> coatings at 750 °C. Materials and Corrosion - Werkstoffe Und Korrosion, 2014, 65, 45-60.	0.8	2
34	Characterisation of the austenitic steels Super 304H and HR3C after air and steam oxidation. Materials at High Temperatures, 0, , 1-14.	0.5	2
35	Enhanced sulphidation/oxidation resistance of Ti–45Al–8Nb alloy by multilayered coatings at 850°C for up to 675 h. Corrosion Engineering Science and Technology, 2014, 49, 590-602.	0.7	1
36	Steam Oxidation Behavior of Highly Alloyed Steels in Pure Water Conditions at High Temperatures. Corrosion, 2019, 75, 349-357.	0.5	1

Tomasz Dudziak

#	Article	IF	CITATIONS
37	Sulfidation of Ceramic-Based Coatings Deposited on Low-Alloyed Steel 16Mo3 Exposed at High Temperature. Journal of Materials Engineering and Performance, 2021, 30, 8538.	1.2	1
38	Steam oxidation behaviour of plasma nitrided Fe-based alloys. Anti-Corrosion Methods and Materials, 2013, 60, 288-294.	0.6	0
39	Air oxidation behaviour of standard PVD and novel HIPIMS coatings at 750°C for 1000 h. Corrosion Engineering Science and Technology, 2015, 50, 118-127.	0.7	Ο
40	Long exposure test in air, conducted on super-lattice coatings at 850°C for 4,000 hours. Anti-Corrosion Methods and Materials, 2015, 62, 394-399.	0.6	0
41	Internal Oxidation Depth Penetration in Ni-Based Alloys at High Temperatures. Corrosion, 2019, 75, 192-202.	0.5	0
42	Effect of ceramicâ€based coatings deposited on lowâ€alloyed steel T/P22 10H2M exposed at high temperature. International Journal of Applied Ceramic Technology, 2021, 18, 913-927.	1.1	0