
## **Terry Lechler**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9049026/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Hair follicle stem cells feel the pressure. Cell Stem Cell, 2022, 29, 1-2.                                                                                              | 11.1 | 8         |
| 2  | Differentiated Daughter Cells Regulate Stem Cell Proliferation and Fate through Intra-tissue Tension.<br>Cell Stem Cell, 2021, 28, 436-452.e5.                          | 11.1 | 40        |
| 3  | Roles for microtubules in the proliferative and differentiated cells of stratified epithelia. Current<br>Opinion in Cell Biology, 2021, 68, 98-104.                     | 5.4  | 7         |
| 4  | Spindle positioning and its impact on vertebrate tissue architecture and cell fate. Nature Reviews<br>Molecular Cell Biology, 2021, 22, 691-708.                        | 37.0 | 58        |
| 5  | KIF18B is a cell type–specific regulator of spindle orientation in the epidermis. Molecular Biology of the Cell, 2021, 32, ar29.                                        | 2.1  | 4         |
| 6  | Roles for Ndel1 in keratin organization and desmosome function. Molecular Biology of the Cell, 2021, 32, ar2.                                                           | 2.1  | 5         |
| 7  | RYK-mediated filopodial pathfinding facilitates midgut elongation. Development (Cambridge), 2020, 147,                                                                  | 2.5  | 4         |
| 8  | Proteomic analysis of desmosomes reveals novel components required for epidermal integrity.<br>Molecular Biology of the Cell, 2020, 31, 1140-1153.                      | 2.1  | 18        |
| 9  | Epidermal structure and differentiation. Current Biology, 2020, 30, R144-R149.                                                                                          | 3.9  | 26        |
| 10 | Lysosome-Rich Enterocytes Mediate Protein Absorption in the Vertebrate Gut. Developmental Cell, 2019, 51, 7-20.e6.                                                      | 7.0  | 74        |
| 11 | Regulated spindle orientation buffers tissue growth in the epidermis. ELife, 2019, 8, .                                                                                 | 6.0  | 20        |
| 12 | Morphogenesis and Compartmentalization of the Intestinal Crypt. Developmental Cell, 2018, 45, 183-197.e5.                                                               | 7.0  | 111       |
| 13 | Genetically induced microtubule disruption in the mouse intestine impairs intracellular organization and transport. Molecular Biology of the Cell, 2018, 29, 1533-1541. | 2.1  | 15        |
| 14 | Cellular Dynamics Driving Elongation of the Gut. Developmental Cell, 2018, 46, 127-128.                                                                                 | 7.0  | 2         |
| 15 | Editorial overview: Cell architecture: Mechanisms and scales of cellular organization and decision making. Current Opinion in Cell Biology, 2017, 44, iv-v.             | 5.4  | 0         |
| 16 | Microtubule organization, dynamics and functions in differentiated cells. Development (Cambridge), 2017, 144, 3012-3021.                                                | 2.5  | 170       |
| 17 | A transgenic toolkit for visualizing and perturbing microtubules reveals unexpected functions in the epidermis. ELife, 2017, 6, .                                       | 6.0  | 29        |
| 18 | NuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures. ELife, 2016, 5, .                             | 6.0  | 77        |

TERRY LECHLER

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | FRA1 promotes squamous cell carcinoma growth and metastasis through distinct AKT and c-Jun dependent mechanisms. Oncotarget, 2016, 7, 34371-34383.                                                                                   | 1.8 | 37        |
| 20 | Divergent regulation of functionally distinct γ-tubulin complexes during differentiation. Journal of Cell Biology, 2016, 213, 679-692.                                                                                               | 5.2 | 74        |
| 21 | The Arp2/3 complex has essential roles in vesicle trafficking and transcytosis in the mammalian small intestine. Molecular Biology of the Cell, 2015, 26, 1995-2004.                                                                 | 2.1 | 53        |
| 22 | Studying cell biology in the skin. Molecular Biology of the Cell, 2015, 26, 4183-4186.                                                                                                                                               | 2.1 | 3         |
| 23 | Cell Adhesion in Epidermal Development and Barrier Formation. Current Topics in Developmental<br>Biology, 2015, 112, 383-414.                                                                                                        | 2.2 | 76        |
| 24 | Cell-Cell Adhesions and Cell Contractility Are Upregulated upon Desmosome Disruption. PLoS ONE, 2014, 9, e101824.                                                                                                                    | 2.5 | 23        |
| 25 | Developmental stratification of the mammary epithelium occurs through symmetry-breaking vertical divisions of apically positioned luminal cells. Development (Cambridge), 2014, 141, 1085-1094.                                      | 2.5 | 48        |
| 26 | Arp2/3 complex function in the epidermis. Tissue Barriers, 2014, 2, e944445.                                                                                                                                                         | 3.2 | 6         |
| 27 | Actin-related protein2/3 complex regulates tight junctions and terminal differentiation to promote epidermal barrier formation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3820-9. | 7.1 | 65        |
| 28 | NuMA localization, stability, and function in spindle orientation involve 4.1 and Cdk1 interactions.<br>Molecular Biology of the Cell, 2013, 24, 3651-3662.                                                                          | 2.1 | 76        |
| 29 | β-Catenin protects the epidermis from mechanical stresses. Journal of Cell Biology, 2013, 202, 45-52.                                                                                                                                | 5.2 | 42        |
| 30 | FRAP Analysis Reveals Stabilization of Adhesion Structures in the Epidermis Compared to Cultured<br>Keratinocytes. PLoS ONE, 2013, 8, e71491.                                                                                        | 2.5 | 28        |
| 31 | Desmoplakin controls microvilli length but not cell adhesion or keratin organization in the intestinal epithelium. Molecular Biology of the Cell, 2012, 23, 792-799.                                                                 | 2.1 | 47        |
| 32 | Noncentrosomal microtubules and type II myosins potentiate epidermal cell adhesion and barrier formation. Journal of Cell Biology, 2012, 199, 513-525.                                                                               | 5.2 | 58        |
| 33 | Asymmetric Cell Divisions in the Epidermis. International Review of Cell and Molecular Biology, 2012, 295, 199-232.                                                                                                                  | 3.2 | 42        |
| 34 | Adherens Junctions and Stem Cells. Sub-Cellular Biochemistry, 2012, 60, 359-377.                                                                                                                                                     | 2.4 | 10        |
| 35 | Polarity and stratification of the epidermis. Seminars in Cell and Developmental Biology, 2012, 23, 890-896.                                                                                                                         | 5.0 | 48        |
| 36 | Control of cortical microtubule organization and desmosome stability by centrosomal proteins.<br>Bioarchitecture, 2011, 1, 221-224.                                                                                                  | 1.5 | 16        |

TERRY LECHLER

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Lis1 is essential for cortical microtubule organization and desmosome stability in the epidermis.<br>Journal of Cell Biology, 2011, 194, 631-642.                                                                   | 5.2  | 73        |
| 38 | Robust control of mitotic spindle orientation in the developing epidermis. Journal of Cell Biology, 2010, 191, 915-922.                                                                                             | 5.2  | 147       |
| 39 | Dissecting cell adhesion cross-talk with micropatterns. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13199-13200.                                                    | 7.1  | 3         |
| 40 | Limiting lumens: a new role for Cdc42. Journal of Cell Biology, 2008, 183, 575-577.                                                                                                                                 | 5.2  | 1         |
| 41 | Desmoplakin: an unexpected regulator of microtubule organization in the epidermis. Journal of Cell<br>Biology, 2007, 176, 147-154.                                                                                  | 5.2  | 173       |
| 42 | Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature, 2005, 437, 275-280.                                                                                                 | 27.8 | 889       |
| 43 | Conditional targeting of E-cadherin in skin: Insights into hyperproliferative and degenerative responses. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 552-557.      | 7.1  | 171       |
| 44 | Coordinating cytoskeletal tracks to polarize cellular movements. Journal of Cell Biology, 2004, 167, 203-207.                                                                                                       | 5.2  | 75        |
| 45 | Saccharomyces cerevisiae Bzz1p Is Implicated with Type I Myosins in Actin Patch Polarization and Is Able<br>To Recruit Actin-Polymerizing Machinery In Vitro. Molecular and Cellular Biology, 2002, 22, 7889-7906.  | 2.3  | 91        |
| 46 | A two-tiered mechanism by which Cdc42 controls the localization and activation of an Arp2/3-activating motor complex in yeast. Journal of Cell Biology, 2001, 155, 261-270.                                         | 5.2  | 111       |
| 47 | Direct Involvement of Yeast Type I Myosins in Cdc42-Dependent Actin Polymerization. Journal of Cell<br>Biology, 2000, 148, 363-374.                                                                                 | 5.2  | 207       |
| 48 | Activation of the yeast Arp2/3 complex by Bee1p, a WASP-family protein. Current Biology, 1999, 9, 501-505.                                                                                                          | 3.9  | 217       |
| 49 | In Vitro Reconstitution of Cortical Actin Assembly Sites in Budding Yeast. Journal of Cell Biology, 1997, 138, 95-103.                                                                                              | 5.2  | 58        |
| 50 | (Aryloxy)aryl Semicarbazones and Related Compounds:Â A Novel Class of Anticonvulsant Agents<br>Possessing High Activity in the Maximal Electroshock Screen. Journal of Medicinal Chemistry, 1996, 39,<br>3984-3997. | 6.4  | 167       |