Bo Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9048650/publications.pdf

Version: 2024-02-01

Bolu

#	Article	IF	CITATIONS
1	Mitochondrial ROS generation for regulation of autophagic pathways in cancer. Biochemical and Biophysical Research Communications, 2011, 414, 5-8.	2.1	206
2	Polygonatum cyrtonema lectin induces apoptosis and autophagy in human melanoma A375 cells through a mitochondria-mediated ROS–p38–p53 pathway. Cancer Letters, 2009, 275, 54-60.	7.2	195
3	Beclin-1: Autophagic regulator and therapeutic target in cancer. International Journal of Biochemistry and Cell Biology, 2013, 45, 921-924.	2.8	186
4	Deconvoluting the role of reactive oxygen species and autophagy in human diseases. Free Radical Biology and Medicine, 2013, 65, 402-410.	2.9	156
5	Targeting apoptotic and autophagic pathways for cancer therapeutics. Cancer Letters, 2011, 300, 105-114.	7.2	149
6	Plant lectins: Targeting programmed cell death pathways as antitumor agents. International Journal of Biochemistry and Cell Biology, 2011, 43, 1442-1449.	2.8	146
7	Targeting autophagy-related protein kinases for potential therapeutic purpose. Acta Pharmaceutica Sinica B, 2020, 10, 569-581.	12.0	142
8	Plant natural compounds: targeting pathways of autophagy as anti ancer therapeutic agents. Cell Proliferation, 2012, 45, 466-476.	5.3	140
9	Targeting Programmed Cell Death Using Smallâ€Molecule Compounds to Improve Potential Cancer Therapy. Medicinal Research Reviews, 2016, 36, 983-1035.	10.5	136
10	Discovery of a small molecule targeting ULK1-modulated cell death of triple negative breast cancer in vitro and in vivo. Chemical Science, 2017, 8, 2687-2701.	7.4	120
11	Discovery of a Small-Molecule Bromodomain-Containing Protein 4 (BRD4) Inhibitor That Induces AMP-Activated Protein Kinase-Modulated Autophagy-Associated Cell Death in Breast Cancer. Journal of Medicinal Chemistry, 2017, 60, 9990-10012.	6.4	103
12	Autophagic pathways as new targets for cancer drug development. Acta Pharmacologica Sinica, 2010, 31, 1154-1164.	6.1	101
13	Antiproliferative activity and apoptosis-inducing mechanism of Concanavalin A on human melanoma A375 cells. Archives of Biochemistry and Biophysics, 2009, 482, 1-6.	3.0	95
14	Molecular mechanisms of <i>Polygonatum cyrtonema</i> lectin-induced apoptosis and autophagy in cancer cells. Autophagy, 2009, 5, 253-255.	9.1	88
15	Induction of apoptosis by Concanavalin A and its molecular mechanisms in cancer cells. Autophagy, 2009, 5, 432-433.	9.1	67
16	Small-Molecule Drug Discovery in Triple Negative Breast Cancer: Current Situation and Future Directions. Journal of Medicinal Chemistry, 2021, 64, 2382-2418.	6.4	61
17	Polygonatum odoratum lectin induces apoptosis and autophagy via targeting EGFR-mediated Ras-Raf-MEK-ERK pathway in human MCF-7 breast cancer cells. Phytomedicine, 2014, 21, 1658-1665.	5.3	57
18	Discovery of Thieno[2,3- <i>d</i>]pyrimidine-Based Hydroxamic Acid Derivatives as Bromodomain-Containing Protein 4/Histone Deacetylase Dual Inhibitors Induce Autophagic Cell Death in Colorectal Carcinoma Cells. Journal of Medicinal Chemistry, 2020, 63, 3678-3700.	6.4	56

Bo Liu

#	Article	IF	CITATIONS
19	Targeting autophagy using small-molecule compounds to improve potential therapy of Parkinson's disease. Acta Pharmaceutica Sinica B, 2021, 11, 3015-3034.	12.0	54
20	Polygonatum cyrtonema lectin induces murine fibrosarcoma L929 cell apoptosis and autophagy via blocking Ras–Raf and PI3K–Akt signaling pathways. Biochimie, 2010, 92, 1934-1938.	2.6	51
21	Design, synthesis, and biological evaluation of quinazolin-4(3H)-one derivatives co-targeting poly(ADP-ribose) polymerase-1 and bromodomain containing protein 4 for breast cancer therapy. Acta Pharmaceutica Sinica B, 2021, 11, 156-180.	12.0	49
22	Systems biology-based discovery of a potential Atg4B agonist (Flubendazole) that induces autophagy in breast cancer. Molecular BioSystems, 2015, 11, 2860-2866.	2.9	48
23	Mechanisms of autophagy and relevant small-molecule compounds for targeted cancer therapy. Cellular and Molecular Life Sciences, 2018, 75, 1803-1826.	5.4	46
24	Small-Molecule Activator of UNC-51-Like Kinase 1 (ULK1) That Induces Cytoprotective Autophagy for Parkinson's Disease Treatment. Journal of Medicinal Chemistry, 2018, 61, 2776-2792.	6.4	46
25	Designing strategies of small-molecule compounds for modulating non-coding RNAs in cancer therapy. Journal of Hematology and Oncology, 2022, 15, 14.	17.0	45
26	Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. Journal of Hematology and Oncology, 2022, 15, 44.	17.0	44
27	Dual-target kinase drug design: Current strategies and future directions in cancer therapy. European Journal of Medicinal Chemistry, 2020, 188, 112025.	5.5	42
28	An integrated proteomics and bioinformatics analyses of hepatitis B virus X interacting proteins and identification of a novel interactor apoA-I. Journal of Proteomics, 2013, 84, 92-105.	2.4	40
29	A small-molecule activator induces ULK1-modulating autophagy-associated cell death in triple negative breast cancer. Autophagy, 2017, 13, 777-778.	9.1	37
30	Autophagic compound database: A resource connecting autophagyâ€modulating compounds, their potential targets and relevant diseases. Cell Proliferation, 2018, 51, e12403.	5.3	36
31	Targeting Regulated Cell Death with Pharmacological Small Molecules: An Update on Autophagy-Dependent Cell Death, Ferroptosis, and Necroptosis in Cancer. Journal of Medicinal Chemistry, 2022, 65, 2989-3001.	6.4	32
32	Main active components of Si-Miao-Yong-An decoction (SMYAD) attenuate autophagy and apoptosis via the PDE5A-AKT and TLR4-NOX4 pathways in isoproterenol (ISO)-induced heart failure models. Pharmacological Research, 2022, 176, 106077.	7.1	29
33	UNC-51-like Kinase 1: From an Autophagic Initiator to Multifunctional Drug Target. Journal of Medicinal Chemistry, 2018, 61, 6491-6500.	6.4	27
34	Dualâ€ŧarget inhibitors of bromodomain and extraâ€ŧerminal proteins in cancer: A review from medicinal chemistry perspectives. Medicinal Research Reviews, 2022, 42, 710-743.	10.5	27
35	Multi-omics approaches identify SF3B3 and SIRT3 as candidate autophagic regulators and druggable targets in invasive breast carcinoma. Acta Pharmaceutica Sinica B, 2021, 11, 1227-1245.	12.0	26
36	Repurposing non-oncology small-molecule drugs to improve cancer therapy: Current situation and future directions. Acta Pharmaceutica Sinica B, 2022, 12, 532-557.	12.0	26

Bo Liu

#	Article	IF	CITATIONS
37	Structure-Guided Design of a Small-Molecule Activator of Sirtuin-3 that Modulates Autophagy in Triple Negative Breast Cancer. Journal of Medicinal Chemistry, 2021, 64, 14192-14216.	6.4	26
38	Design, synthesis and structure-activity relationship of a focused library of β-phenylalanine derivatives as novel eEF2K inhibitors with apoptosis-inducing mechanisms in breast cancer. European Journal of Medicinal Chemistry, 2018, 143, 402-418.	5.5	24
39	Targeting regulated cell death (RCD) with small-molecule compounds in cancer therapy: A revisited review of apoptosis, autophagy-dependent cell death and necroptosis. Drug Discovery Today, 2022, 27, 612-625.	6.4	22
40	Autophagy and beyond: Unraveling the complexity of UNC-51-like kinase 1 (ULK1) from biological functions to therapeutic implications. Acta Pharmaceutica Sinica B, 2022, 12, 3743-3782.	12.0	21
41	Discovery of Novel Dual-Target Inhibitor of Bromodomain-Containing Protein 4/Casein Kinase 2 Inducing Apoptosis and Autophagy-Associated Cell Death for Triple-Negative Breast Cancer Therapy. Journal of Medicinal Chemistry, 2021, 64, 18025-18053.	6.4	19
42	Designing an eEF2K-Targeting PROTAC small molecule that induces apoptosis in MDA-MB-231 cells. European Journal of Medicinal Chemistry, 2020, 204, 112505.	5.5	17
43	Targeting Atg4B for cancer therapy: Chemical mediators. European Journal of Medicinal Chemistry, 2021, 209, 112917.	5.5	17
44	Dual-target inhibitors of bromodomain-containing protein 4 (BRD4) in cancer therapy: Current situation and future directions. Drug Discovery Today, 2022, 27, 246-256.	6.4	17
45	Targeting cancer epigenetic pathways with small-molecule compounds: Therapeutic efficacy and combination therapies. Pharmacological Research, 2021, 173, 105702.	7.1	15
46	Repurposing small-molecule drugs for modulating toxic protein aggregates in neurodegenerative diseases. Drug Discovery Today, 2022, 27, 1994-2007.	6.4	15
47	In silico Analysis of Molecular Mechanisms of Galanthus nivalis Agglutinin-Related Lectin-Induced Cancer Cell Death from Carbohydrate-Binding Motif Evolution Hypothesis. Applied Biochemistry and Biotechnology, 2011, 165, 1037-1046.	2.9	14
48	Network-Based Identification of Novel Connections Among Apoptotic Signaling Pathways in Cancer. Applied Biochemistry and Biotechnology, 2012, 167, 621-631.	2.9	14
49	Discovery of a novel small-molecule inhibitor of Fam20C that induces apoptosis and inhibits migration in triple negative breast cancer. European Journal of Medicinal Chemistry, 2021, 210, 113088.	5.5	14
50	Identification of autophagic target RAB13 with smallâ€molecule inhibitor in lowâ€grade glioma via integrated multiâ€omics approaches coupled with virtual screening of traditional Chinese medicine databases. Cell Proliferation, 2021, 54, e13135.	5.3	10
51	The emerging role of long noncoding RNAs in esophageal carcinoma: from underlying mechanisms to clinical implications. Cellular and Molecular Life Sciences, 2021, 78, 3403-3422.	5.4	8
52	Inhibiting Eukaryotic Elongation Factor 2 Kinase: An Update on Pharmacological Small-Molecule Compounds in Cancer. Journal of Medicinal Chemistry, 2021, 64, 8870-8883.	6.4	8
53	Deciphering the Rules of in Silico Autophagy Methods for Expediting Medicinal Research. Journal of Medicinal Chemistry, 2019, 62, 6831-6842.	6.4	7
54	The protective effects of citrullus colocynthis on inhibiting oxidative damage and autophagy-associated cell death in Parkinson's disease. Journal of the Taiwan Institute of Chemical Engineers, 2019, 100, 18-25.	5.3	6

#	Article	IF	CITATIONS
55	Targeting Autophagy with Small-Molecule Modulators in Immune-Related Diseases. Advances in Experimental Medicine and Biology, 2019, 1209, 181-203.	1.6	2
56	Unraveling the Roles of Protein Kinases in Autophagy: An Update on Small-Molecule Compounds for Targeted Therapy. Journal of Medicinal Chemistry, 2022, 65, 5870-5885.	6.4	2