
Klaus G Griewank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9048171/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mutations in <i>GNA11</i> in Uveal Melanoma. New England Journal of Medicine, 2010, 363, 2191-2199.	27.0	1,312
2	Melanoma. Lancet, The, 2018, 392, 971-984.	13.7	1,016
3	Germline mutations in BAP1 predispose to melanocytic tumors. Nature Genetics, 2011, 43, 1018-1021.	21.4	662
4	Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. Cancer Cell, 2017, 32, 204-220.e15.	16.8	642
5	Homotypic Interactions Mediated by Slamf1 and Slamf6 Receptors Control NKT Cell Lineage Development. Immunity, 2007, 27, 751-762.	14.3	301
6	Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal of Cancer, 2019, 113, 47-54.	2.8	300
7	Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Science Translational Medicine, 2015, 7, 317ra199.	12.4	239
8	Sarcoma classification by DNA methylation profiling. Nature Communications, 2021, 12, 498.	12.8	237
9	IL-17 Promotes Progression of Cutaneous Leishmaniasis in Susceptible Mice. Journal of Immunology, 2009, 182, 3039-3046.	0.8	204
10	TERT Promoter Mutation Status as an Independent Prognostic Factor in Cutaneous Melanoma. Journal of the National Cancer Institute, 2014, 106, .	6.3	204
11	Phase II DeCOG-Study of Ipilimumab in Pretreated and Treatment-NaÃ ⁻ ve Patients with Metastatic Uveal Melanoma. PLoS ONE, 2015, 10, e0118564.	2.5	197
12	A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal of Cancer, 2019, 111, 148-154.	2.8	197
13	Acquired IFNÎ ³ resistance impairs anti-tumor immunity and gives rise to T-cell-resistant melanoma lesions. Nature Communications, 2017, 8, 15440.	12.8	195
14	Conjunctival Melanomas Harbor <i>BRAF</i> and <i>NRAS</i> Mutations and Copy Number Changes Similar to Cutaneous and Mucosal Melanomas. Clinical Cancer Research, 2013, 19, 3143-3152.	7.0	187
15	PLZF induces an intravascular surveillance program mediated by long-lived LFA-1–ICAM-1 interactions. Journal of Experimental Medicine, 2011, 208, 1179-1188.	8.5	162
16	Genetic Evolution of T-cell Resistance in the Course of Melanoma Progression. Clinical Cancer Research, 2014, 20, 6593-6604.	7.0	145
17	SPOTting Model Parameters Using a Ready-Made Python Package. PLoS ONE, 2015, 10, e0145180.	2.5	118
18	TERT promoter mutations are frequent in atypical fibroxanthomas and pleomorphic dermal sarcomas. Modern Pathology, 2014, 27, 502-508.	5.5	108

#	Article	IF	CITATIONS
19	Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. International Journal of Cancer, 2013, 133, 1653-1663.	5.1	107
20	TERT promoter mutations in ocular melanoma distinguish between conjunctival and uveal tumours. British Journal of Cancer, 2013, 109, 497-501.	6.4	103
21	Targeted massively parallel sequencing of angiosarcomas reveals frequent activation of the mitogen activated protein kinase pathway. Oncotarget, 2015, 6, 36041-36052.	1.8	103
22	Genetic and molecular characterization of uveal melanoma cell lines. Pigment Cell and Melanoma Research, 2012, 25, 182-187.	3.3	99
23	The genetic basis for most patients with pustular skin disease remains elusive. British Journal of Dermatology, 2018, 178, 740-748.	1.5	82
24	SF3B1 and BAP1 mutations in blue nevus-like melanoma. Modern Pathology, 2017, 30, 928-939.	5.5	81
25	Genetic and clinico-pathologic analysis of metastatic uveal melanoma. Modern Pathology, 2014, 27, 175-183.	5.5	78
26	TERT Promoter Mutations Are Frequent in Cutaneous Basal Cell Carcinoma and Squamous Cell Carcinoma. PLoS ONE, 2013, 8, e80354.	2.5	78
27	GNA11 Q209L Mouse Model Reveals RasGRP3 as an Essential Signaling Node in Uveal Melanoma. Cell Reports, 2018, 22, 2455-2468.	6.4	75
28	Atypical fibroxanthoma and pleomorphic dermal sarcoma harbor frequent NOTCH1/2 and FAT1 mutations and similar DNA copy number alteration profiles. Modern Pathology, 2018, 31, 418-428.	5.5	75
29	Targeted next generation sequencing of mucosal melanomas identifies frequent <i>NF1</i> and <i>RAS</i> mutations. Oncotarget, 2017, 8, 40683-40692.	1.8	69
30	The X-Linked DDX3X RNA Helicase Dictates Translation Reprogramming and Metastasis in Melanoma. Cell Reports, 2019, 27, 3573-3586.e7.	6.4	66
31	Genetic Alterations and Personalized Medicine in Melanoma: Progress and Future Prospects. Journal of the National Cancer Institute, 2014, 106, djt435-djt435.	6.3	64
32	Melanoma Lesions Independently Acquire T-cell Resistance during Metastatic Latency. Cancer Research, 2016, 76, 4347-4358.	0.9	63
33	Tumor CDKN2A-Associated JAK2 Loss and Susceptibility to Immunotherapy Resistance. Journal of the National Cancer Institute, 2018, 110, 677-681.	6.3	63
34	NF1 mutations in conjunctival melanoma. British Journal of Cancer, 2018, 118, 1243-1247.	6.4	59
35	Activating cysteinyl leukotriene receptor 2 (CYSLTR2) mutations in blue nevi. Modern Pathology, 2017, 30, 350-356.	5.5	56
36	Targeted next generation sequencing reveals unique mutation profile of primary melanocytic tumors of the central nervous system. Journal of Neuro-Oncology, 2016, 127, 435-444.	2.9	55

#	Article	IF	CITATIONS
37	Plasma cell differentiation in T-independent type 2 immune responses is independent of CD11chigh dendritic cells. European Journal of Immunology, 2006, 36, 2912-2919.	2.9	52
38	Genome-wide methylation profiling and copy number analysis in atypical fibroxanthomas and pleomorphic dermal sarcomas indicate a similar molecular phenotype. Clinical Sarcoma Research, 2019, 9, 2.	2.3	48
39	Differential influence of vemurafenib and dabrafenib on patients' lymphocytes despite similar clinical efficacy in melanoma. Annals of Oncology, 2014, 25, 747-753.	1.2	47
40	Frequent <i>GNAQ, GNA11</i> , and <i>EIF1AX</i> Mutations in Iris Melanoma. , 2017, 58, 3464.		38
41	Clinical and genetic analysis of melanomas arising in acral sites. European Journal of Cancer, 2019, 119, 66-76.	2.8	34
42	Pathology and genetics of uveal melanoma. Pathology, 2013, 45, 18-27.	0.6	31
43	Combination of BRAF Inhibitors and Brain Radiotherapy in Patients With Metastatic Melanoma Shows Minimal Acute Toxicity. Journal of Clinical Oncology, 2013, 31, 3844-3845.	1.6	30
44	Integrated Genomic Classification of Melanocytic Tumors of the Central Nervous System Using Mutation Analysis, Copy Number Alterations, and DNA Methylation Profiling. Clinical Cancer Research, 2018, 24, 4494-4504.	7.0	28
45	Lack of SF3B1 R625 mutations in cutaneous melanoma. Diagnostic Pathology, 2013, 8, 87.	2.0	27
46	Targeting the innate immunoreceptor RIG-I overcomes melanoma-intrinsic resistance to T cell immunotherapy. Journal of Clinical Investigation, 2020, 130, 4266-4281.	8.2	27
47	Application of Circulating Cell-Free Tumor DNA Profiles for Therapeutic Monitoring and Outcome Prediction in Genetically Heterogeneous Metastatic Melanoma. JCO Precision Oncology, 2019, 3, 1-10.	3.0	25
48	Single-strand DNA library preparation improves sequencing of formalin-fixed and paraffin-embedded (FFPE) cancer DNA. Oncotarget, 2016, 7, 59115-59128.	1.8	25
49	Activating CYSLTR2 and PLCB4 Mutations in Primary Leptomeningeal Melanocytic Tumors. Journal of Investigative Dermatology, 2017, 137, 2033-2035.	0.7	24
50	Assessment of Nonradioactive Multispectral Optoacoustic Tomographic Imaging With Conventional Lymphoscintigraphic Imaging for Sentinel Lymph Node Biopsy in Melanoma. JAMA Network Open, 2019, 2, e199020.	5.9	24
51	Frequent <i>TERT</i> Promoter Mutations in Ocular Surface Squamous Neoplasia. , 2015, 56, 5854.		23
52	High <i><scp>TERT</scp></i> promoter mutation frequency in nonâ€acral cutaneous metastatic melanoma. Pigment Cell and Melanoma Research, 2016, 29, 598-600.	3.3	22
53	Miltefosine Efficiently Eliminates <i>Leishmania major</i> Amastigotes from Infected Murine Dendritic Cells without Altering Their Immune Functions. Antimicrobial Agents and Chemotherapy, 2010, 54, 652-659.	3.2	21
54	New developments in biomarkers for melanoma. Current Opinion in Oncology, 2013, 25, 145-151.	2.4	20

#	Article	IF	CITATIONS
55	Conjunctival Melanomas Harbor <i>BRAF</i> and <i>NRAS</i> Mutations—Response. Clinical Cancer Research, 2013, 19, 6331-6332.	7.0	19
56	Absence of <scp><i>TERT</i></scp> promoter mutations in primary melanocytic tumours of the central nervous system. Neuropathology and Applied Neurobiology, 2014, 40, 794-797.	3.2	19
57	Melanoma diagnosed in lesions previously treated by laser therapy. Journal of Dermatology, 2017, 44, 23-28.	1.2	19
58	Prognostic significance of NAB2–STAT6 fusion variants and TERT promotor mutations in solitary fibrous tumors/hemangiopericytomas of the CNS: not (yet) clear. Acta Neuropathologica, 2019, 137, 679-682.	7.7	19
59	Proton radiotherapy in advanced malignant melanoma of the conjunctiva. Graefe's Archive for Clinical and Experimental Ophthalmology, 2019, 257, 1309-1318.	1.9	17
60	CAMK1D Triggers Immune Resistance of Human Tumor Cells Refractory to Anti–PD-L1 Treatment. Cancer Immunology Research, 2020, 8, 1163-1179.	3.4	17
61	GNA14, GNA11, and GNAQ Mutations Are Frequent in Benign but Not Malignant Cutaneous Vascular Tumors. Frontiers in Genetics, 2021, 12, 663272.	2.3	16
62	Immunocytochemical analysis of glucose transporter proteinâ€1 (<scp>GLUT</scp> â€1) in typical, brain invasive, atypical and anaplastic meningioma. Neuropathology, 2015, 35, 24-36.	1.2	15
63	Oncogene status as a diagnostic tool in ocular and cutaneous melanoma. European Journal of Cancer, 2016, 57, 112-117.	2.8	14
64	Oxygenation Status in Chronic Leg Ulcer After Topical Hemoglobin Application May Act as a Surrogate Marker to Find the Best Treatment Strategy and to Avoid Ineffective Conservative Long-term Therapy. Molecular Imaging and Biology, 2018, 20, 124-130.	2.6	13
65	Deep Penetrating Nevus and Borderline-Deep Penetrating Nevus: A Literature Review. Frontiers in Oncology, 2020, 10, 837.	2.8	13
66	NF1-mutated melanomas reveal distinct clinical characteristics depending on tumour origin and respond favourably to immune checkpoint inhibitors. European Journal of Cancer, 2021, 159, 113-124.	2.8	13
67	Immune Modulating Effects of NKT Cells in a Physiologically Low Dose Leishmania major Infection Model after αGalCer Analog PBS57 Stimulation. PLoS Neglected Tropical Diseases, 2014, 8, e2917.	3.0	12
68	Next-Generation Sequencing to Guide Treatment of Advanced Melanoma. American Journal of Clinical Dermatology, 2017, 18, 303-310.	6.7	12
69	Trametinib-Induced Remission of an <i>MEK1</i> -Mutated Langerhans Cell Histiocytosis. JCO Precision Oncology, 2017, 1, 1-5.	3.0	11
70	TERT promoter mutations are associated with longer progression-free and overall survival in patients with BRAF-mutant melanoma receiving BRAF and MEK inhibitor therapy. European Journal of Cancer, 2022, 161, 99-107.	2.8	10
71	Diagnosing a Primary Leptomeningeal Melanoma by Gene Mutation Signature. Journal of Investigative Dermatology, 2016, 136, 1526-1528.	0.7	9
72	Digital Quantification of Tumor PD-L1 Predicts Outcome of PD-1-Based Immune Checkpoint Therapy in Metastatic Melanoma. Frontiers in Oncology, 2021, 11, 741993.	2.8	9

#	Article	IF	CITATIONS
73	Corticosteroids Augment BRAF Inhibitor Vemurafenib Induced Lymphopenia and Risk of Infection. PLoS ONE, 2015, 10, e0124590.	2.5	9
74	Analysis of SDHD promoter mutations in various types of melanoma. Oncotarget, 2015, 6, 25868-25882.	1.8	9
75	Tumor regression and sirolimus-based therapy in lung transplantation. Journal of Heart and Lung Transplantation, 2013, 32, 938-939.	0.6	8
76	Biomarkers in melanoma. Scandinavian Journal of Clinical and Laboratory Investigation, 2016, 76, S104-S112.	1.2	8
77	Frequent Occurrence of NRAS and BRAF Mutations in Human Acral Naevi. Cancers, 2019, 11, 546.	3.7	8
78	High-resolution three-dimensional imaging for precise staging in melanoma. European Journal of Cancer, 2021, 159, 182-193.	2.8	8
79	Genetic characterization of advanced conjunctival melanoma and response to systemic treatment. European Journal of Cancer, 2022, 166, 60-72.	2.8	7
80	Re: Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. European Journal of Cancer, 2020, 130, 259-261.	2.8	6
81	Apoptotic Gastritis in Melanoma Patients Treated With PD-1-Based Immune Checkpoint Inhibition – Clinical and Histopathological Findings Including the Diagnostic Value of Anti-Caspase-3 Immunohistochemistry. Frontiers in Oncology, 2021, 11, 725549.	2.8	6
82	Abstract 3587: XL184: c-Met inhibition is effective in a mouse xenograft model of metastatic uveal melanoma. Cancer Research, 2011, 71, 3587-3587.	0.9	6
83	Intraventricular melanocytoma diagnosis confirmed by gene mutation profile. Neuropathology, 2018, 38, 288-292.	1.2	5
84	Molecular pathology as a diagnostic aid in difficult-to-classify melanocytic tumours with spitzoid morphology. European Journal of Cancer, 2021, 148, 340-347.	2.8	5
85	Genetic and Clinical Characteristics of ARID1A Mutated Melanoma Reveal High Tumor Mutational Load without Implications on Patient Survival. Cancers, 2022, 14, 2090.	3.7	5
86	Panel Sequencing Melanomas. Journal of Investigative Dermatology, 2015, 135, 335-336.	0.7	4
87	The Prognostic Relevance of PMCA4 Expression in Melanoma: Gender Specificity and Implications for Immune Checkpoint Inhibition. International Journal of Molecular Sciences, 2022, 23, 3324.	4.1	4
88	Re: van Poppelen etÂal.: Genetic background of iris melanomas and iris melanocytic tumors of uncertain malignant potential (Ophthalmology. 2018;125:904-912). Ophthalmology, 2018, 125, e78-e79.	5.2	3
89	Angioplasmacellular Hyperplasia—A New Histopathologic Clue for Anogenital Herpes Simplex Recidivans in Immunocompromised Patients?. American Journal of Dermatopathology, 2014, 36, 822-826.	0.6	2
90	Reply to the letters to the editor â€~Differential influence of vemurafenib and dabrafenib on patients' lymphocytes despite similar clinical efficacy in melanoma' by Diwakar et al Annals of Oncology, 2015, 26, 250-251.	1.2	2

#	Article	IF	CITATIONS
91	Fatal swelling of the groin – Clear cell sarcoma: a rare but important differential diagnosis to malignant melanoma. JDDG - Journal of the German Society of Dermatology, 2020, 18, 1165-1168.	0.8	2
92	Genetic and methylation profiles distinguish benign, malignant and spitzoid melanocytic tumors. International Journal of Cancer, 0, , .	5.1	2
93	Comment on "Cutaneous Melanoma in Childhood and Adolescence Shows Frequent Loss of INK4A and Gain of KITâ€: Journal of Investigative Dermatology, 2010, 130, 2330-2331.	0.7	1
94	Abstract 4714: Vemurafenib reverses immunosuppression by myeloid derived suppressor cells , 2013, , .		1
95	Genetic alterations in uveal melanoma. Expert Review of Ophthalmology, 2011, 6, 129-132.	0.6	0
96	Response. Journal of the National Cancer Institute, 2015, 107, djv051-djv051.	6.3	0
97	Epidermal growth factor receptor gaining impact in cutaneous squamous cell carcinoma. British Journal of Dermatology, 2017, 176, 1126-1127.	1.5	0
98	An Animal Model of Cutaneous Cyst Development Enables the Identification of Three Quantitative Trait Loci, Including the Homologue of a Human Locus (TRICY1). Journal of Investigative Dermatology, 2019, 139, 2235-2238.e5.	0.7	0
99	Rare TERT Promoter Mutations Present in Benign and Malignant Cutaneous Vascular Tumors. Dermato, 2021, 1, 18-25.	0.9	0
100	Response to comment – Molecular pathology as a diagnostic aid in difficult to classify melanocytic tumours with spitzoid morphology. European Journal of Cancer, 2021, 157, 514-515.	2.8	0