
Chandra Nautiyal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9047964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiology and Biochemistry, 2016, 99, 108-117.	5.8	346
2	Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiology and Biochemistry, 2013, 66, 1-9.	5.8	332
3	Changes in Bacterial Community Structure of Agricultural Land Due to Long-Term Organic and Chemical Amendments. Microbial Ecology, 2012, 64, 450-460.	2.8	286
4	Synergistic effect of <i>Pseudomonas putida</i> and <i>Bacillus amyloliquefaciens</i> ameliorates drought stress in chickpea (<i>Cicer arietinum</i> L.). Plant Signaling and Behavior, 2016, 11, e1071004.	2.4	157
5	Induction of Plant Defense Enzymes and Phenolics by Treatment With Plant Growth–Promoting Rhizobacteria Serratia marcescens NBRI1213. Current Microbiology, 2006, 52, 363-368.	2.2	136
6	A Functional Genomic Perspective on Drought Signalling and its Crosstalk with Phytohormone-mediated Signalling Pathways in Plants. Current Genomics, 2017, 18, 469-482.	1.6	123
7	Gene expression profiling through microarray analysis in <i>Arabidopsis thaliana</i> colonized by <i>Pseudomonas putida</i> MTCC5279, a plant growth promoting rhizobacterium. Plant Signaling and Behavior, 2012, 7, 235-245.	2.4	95
8	Transcriptional alterations reveal Bacillus amyloliquefaciens-rice cooperation under salt stress. Scientific Reports, 2019, 9, 11912.	3.3	84
9	Tripartite interactions among Paenibacillus lentimorbus NRRL B-30488, Piriformospora indica DSM 11827, and Cicer arietinum L World Journal of Microbiology and Biotechnology, 2010, 26, 1393-1399.	3.6	81
10	Paenibacillus lentimorbus Inoculation Enhances Tobacco Growth and Extenuates the Virulence of Cucumber mosaic virus. PLoS ONE, 2016, 11, e0149980.	2.5	75
11	Southern blight disease of tomato control by 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing <i>Paenibacillus lentimorbus</i> B-30488. Plant Signaling and Behavior, 2016, 11, e1113363.	2.4	60
12	Chlorella vulgaris and Pseudomonas putida interaction modulates phosphate trafficking for reduced arsenic uptake in rice (Oryza sativa L.). Journal of Hazardous Materials, 2018, 351, 177-187.	12.4	60
13	Medicinal smoke reduces airborne bacteria. Journal of Ethnopharmacology, 2007, 114, 446-451.	4.1	57
14	Rhizosphere competent Pantoea agglomerans enhances maize (Zea mays) and chickpea (Cicer arietinum) Tj ET 405-413.	Qq0 0 0 rg 1.7	BT /Overlock 50
15	Drought tolerant Ochrobactrum sp. inoculation performs multiple roles in maintaining the homeostasis in Zea mays L. subjected to deficit water stress. Plant Physiology and Biochemistry, 2020, 150, 1-14.	5.8	47
16	Environmental Escherichia coli occur as natural plant growth-promoting soil bacterium. Archives of Microbiology, 2010, 192, 185-193.	2.2	46
17	Root system architecture, physiological analysis and dynamic transcriptomics unravel the drought-responsive traits in rice genotypes. Ecotoxicology and Environmental Safety, 2021, 207, 111252.	6.0	39
18	Uncultured bacterial diversity in tropical maize (<i>Zea mays</i> L.) rhizosphere. Journal of Basic Microbiology, 2011, 51, 15-32.	3.3	33

CHANDRA NAUTIYAL

#	Article	IF	CITATIONS
19	Revealing the complexity of protein abundance in chickpea root under drought-stress using a comparative proteomics approach. Plant Physiology and Biochemistry, 2020, 151, 88-102.	5.8	27
20	Demonstrating the potential of abiotic stress-tolerant Jeotgalicoccus huakuii NBRI 13E for plant growth promotion and salt stress amelioration. Annals of Microbiology, 2019, 69, 419-434.	2.6	20
21	De novo assembly and characterization of root transcriptome in two distinct morphotypes of vetiver, Chrysopogon zizaniodes (L.) Roberty. Scientific Reports, 2015, 5, 18630.	3.3	18
22	Impact of salinity-tolerant MCM6 transgenic tobacco on soil enzymatic activities and the functional diversity of rhizosphere microbial communities. Research in Microbiology, 2012, 163, 511-517.	2.1	16
23	Self-cleansing properties of Ganga during mass ritualistic bathing on Maha-Kumbh. Environmental Monitoring and Assessment, 2020, 192, 221.	2.7	16
24	Pseudomonas putida NBRIC19 provides protection to neighboring plant diversity from invasive weed Parthenium hysterophorus L. by altering soil microbial community. Acta Physiologiae Plantarum, 2012, 34, 2187-2195.	2.1	9
25	Metabolite Profiling Reveals Abiotic Stress Tolerance in Tn5 Mutant of Pseudomonas putida. PLoS ONE, 2015, 10, e0113487.	2.5	8
26	Paenibacillus lentimorbus Enhanced Abiotic Stress Tolerance Through Lateral Root Formation and Phytohormone Regulation. Journal of Plant Growth Regulation, 2022, 41, 2198-2209.	5.1	6
27	Reduced cell wall degradation plays a role in cow dung-mediated management of wilt complex disease of chickpea. Biology and Fertility of Soils, 2013, 49, 881-891.	4.3	5
28	Enhancement of Drought Tolerance in Transgenic Arabidopsis thaliana Plants Overexpressing Chickpea Ca14-3-3 Gene. Journal of Plant Growth Regulation, 2023, 42, 1544-1557.	5.1	3