Zuozhong Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9046812/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of Surface Curvature in Electrocatalysts. Chemistry - A European Journal, 2022, 28, .	1.7	9
2	Co porphyrin-based metal-organic framework for hydrogen evolution reaction and oxygen reduction reaction. Chinese Chemical Letters, 2022, 33, 3999-4002.	4.8	35
3	Metalâ€Corroleâ€Based Porous Organic Polymers for Electrocatalytic Oxygen Reduction and Evolution Reactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	54
4	Metalâ€Corroleâ€Based Porous Organic Polymers for Electrocatalytic Oxygen Reduction and Evolution Reactions. Angewandte Chemie, 2022, 134, .	1.6	9
5	Electrocatalytic oxygen reduction reaction with metalloporphyrins. Scientia Sinica Chimica, 2022, 52, 1306-1320.	0.2	3
6	Inherent mass transfer engineering of a Co, N co-doped carbon material towards oxygen reduction reaction. Journal of Energy Chemistry, 2021, 58, 391-396.	7.1	12
7	Significantly boosted oxygen electrocatalysis with cooperation between cobalt and iron porphyrins. Dalton Transactions, 2021, 50, 5120-5123.	1.6	10
8	Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chemical Society Reviews, 2021, 50, 2540-2581.	18.7	249
9	Substituent position effect of Co porphyrin on oxygen electrocatalysis. Chinese Chemical Letters, 2021, 32, 2841-2845.	4.8	33
10	Metal–Organicâ€Frameworkâ€Supported Molecular Electrocatalysis for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 8472-8476.	7.2	153
11	Highly Curved Nanostructureâ€Coated Co, Nâ€Doped Carbon Materials for Oxygen Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 12759-12764.	7.2	120
12	Highly Curved Nanostructure oated Co, Nâ€Doped Carbon Materials for Oxygen Electrocatalysis. Angewandte Chemie, 2021, 133, 12869-12874.	1.6	19
13	Anion engineering of hierarchical Co-A (AÂ=ÂO, Se, P) hexagrams for efficient electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2021, 32, 3241-3244.	4.8	16
14	Space-confined construction of two-dimensional nitrogen-doped carbon with encapsulated bimetallic nanoparticles as oxygen electrocatalysts. Chemical Communications, 2021, 57, 8190-8193.	2.2	12
15	A Porphyrinic Zirconium Metal–Organic Framework for Oxygen Reduction Reaction: Tailoring the Spacing between Active-Sites through Chain-Based Inorganic Building Units. Journal of the American Chemical Society, 2020, 142, 15386-15395.	6.6	139
16	Recent Progress on Defectâ€rich Transition Metal Oxides and Their Energyâ€Related Applications. Chemistry - an Asian Journal, 2020, 15, 3717-3736.	1.7	38
17	Recent advances in Co-based electrocatalysts for the oxygen reduction reaction. Sustainable Energy and Fuels, 2020, 4, 3848-3870.	2.5	38
18	The NH x Group Induced Formation of 3D αâ€Co(OH) 2 Curly Nanosheet Aggregates as Efficient Oxygen Evolution Electrocatalysts. Small, 2020, 16, 2001973.	5.2	22

ZUOZHONG LIANG

#	Article	IF	CITATIONS
19	Nickel induced electronic structural regulation of cobalt hydroxide for enhanced water oxidation. Journal of Materials Chemistry A, 2020, 8, 6699-6708.	5.2	29
20	A yolk–shell structured metal–organic framework with encapsulated iron-porphyrin and its derived bimetallic nitrogen-doped porous carbon for an efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 9536-9544.	5.2	95
21	Ultraâ€thin Coâ^'Fe Layered Double Hydroxide Hollow Nanocubes for Efficient Electrocatalytic Water Oxidation. ChemPhysChem, 2019, 20, 2964-2967.	1.0	25
22	2D Metal–Organic Framework Derived CuCo Alloy Nanoparticles Encapsulated by Nitrogenâ€Đoped Carbonaceous Nanoleaves for Efficient Bifunctional Oxygen Electrocatalyst and Zinc–Air Batteries. Chemistry - A European Journal, 2019, 25, 12780-12788.	1.7	38
23	Importance of Electrocatalyst Morphology for the Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 2600-2614.	1.7	45
24	A two-dimensional multi-shelled metal–organic framework and its derived bimetallic N-doped porous carbon for electrocatalytic oxygen reduction. Chemical Communications, 2019, 55, 14805-14808.	2.2	39
25	Dual Tuning of Ultrathin α-Co(OH) ₂ Nanosheets by Solvent Engineering and Coordination Competition for Efficient Oxygen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 3527-3535.	3.2	56
26	Novel insight into the epitaxial growth mechanism of six-fold symmetrical β-Co(OH)2/Co(OH)F hierarchical hexagrams and their water oxidation activity. Electrochimica Acta, 2018, 271, 526-536.	2.6	42
27	Quasi-single-crystalline CoO hexagrams with abundant defects for highly efficient electrocatalytic water oxidation. Chemical Science, 2018, 9, 6961-6968.	3.7	56
28	Cobalt–Nitrogenâ€Ðoped Helical Carbonaceous Nanotubes as a Class of Efficient Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie, 2018, 130, 13371-13375.	1.6	19
29	HMTA-assisted formation of hierarchical Co-based materials built by low-dimensional substructures as water oxidation electrocatalysts. CrystEngComm, 2018, 20, 5249-5255.	1.3	12
30	Cobalt–Nitrogenâ€Doped Helical Carbonaceous Nanotubes as a Class of Efficient Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2018, 57, 13187-13191.	7.2	112
31	PVP-assisted transformation of a metal–organic framework into Co-embedded N-enriched meso/microporous carbon materials as bifunctional electrocatalysts. Chemical Communications, 2018, 54, 7519-7522.	2.2	160