Kunwar Paritosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9046659/publications.pdf

Version: 2024-02-01

471509 1,373 28 17 citations h-index papers

g-index 29 29 29 1474 docs citations times ranked citing authors all docs

526287

27

#	Article	IF	CITATIONS
1	Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling. BioMed Research International, 2017, 2017, 1-19.	1.9	338
2	Seafood waste: a source for preparation of commercially employable chitin/chitosan materials. Bioresources and Bioprocessing, 2019, 6, .	4.2	300
3	De-construction of major Indian cereal crop residues through chemical pretreatment for improved biogas production: An overview. Renewable and Sustainable Energy Reviews, 2018, 90, 160-170.	16.4	82
4	Organic Fraction of Municipal Solid Waste: Overview of Treatment Methodologies to Enhance Anaerobic Biodegradability. Frontiers in Energy Research, 2018, 6, .	2.3	70
5	Coupled treatment of lignocellulosic agricultural residues for augmented biomethanation. Journal of Cleaner Production, 2019, 213, 75-88.	9.3	56
6	Weak alkaline treatment of wheat and pearl millet straw for enhanced biogas production and its economic analysis. Renewable Energy, 2019, 139, 753-764.	8.9	54
7	Lignocellulose to bio-hydrogen: An overview on recent developments. International Journal of Hydrogen Energy, 2020, 45, 18195-18210.	7.1	47
8	Additives as a Support Structure for Specific Biochemical Activity Boosts in Anaerobic Digestion: A Review. Frontiers in Energy Research, 2020, 8, .	2.3	44
9	Production of biofuels from biomass: Predicting the energy employing artificial intelligence modelling. Bioresource Technology, 2021, 340, 125642.	9.6	40
10	Feasibility study of waste (d) potential: co-digestion of organic wastes, synergistic effect and kinetics of biogas production. International Journal of Environmental Science and Technology, 2018, 15, 1009-1018.	3 . 5	35
11	Biochar enabled syntrophic action: Solid state anaerobic digestion of agricultural stubble for enhanced methane production. Bioresource Technology, 2019, 289, 121712.	9.6	33
12	Strategies to improve solid state anaerobic bioconversion of lignocellulosic biomass: an overview. Bioresource Technology, 2021, 331, 125036.	9.6	33
13	Integrated system of anaerobic digestion and pyrolysis for valorization of agricultural and food waste towards circular bioeconomy: Review. Bioresource Technology, 2022, 360, 127596.	9.6	31
14	Simultaneous alkaline treatment of pearl millet straw for enhanced solid state anaerobic digestion: Experimental investigation and energy analysis. Journal of Cleaner Production, 2020, 252, 119798.	9.3	29
15	Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metabolic Engineering, 2022, 69, 323-337.	7.0	27
16	GIS Application for the Estimation of Bioenergy Potential from Agriculture Residues: An Overview. Energies, 2021, 14, 898.	3.1	24
17	Reprint of Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metabolic Engineering, 2022, 71, 62-76.	7.0	24
18	Genetic Engineering of Energy Crops to Reduce Recalcitrance and Enhance Biomass Digestibility. Agriculture (Switzerland), 2018, 8, 76.	3.1	17

#	Article	IF	CITATIONS
19	Prioritization of solid concentration and temperature for solid state anaerobic digestion of pearl millet straw employing multi-criteria assessment tool. Scientific Reports, 2019, 9, 11902.	3.3	16
20	Multicriteria Decision Model and Thermal Pretreatment of Hotel Food Waste for Robust Output to Biogas: Case Study from City of Jaipur, India. BioMed Research International, 2018, 2018, 1-13.	1.9	15
21	CFD approach for pumped-recirculation mixing strategy in wastewater treatment: Minimizing power consumption, enhancing resource recovery in commercial anaerobic digester. Journal of Water Process Engineering, 2021, 40, 101777.	5.6	13
22	Enhancing hydrolysis and syntropy simultaneously in solid state anaerobic digestion: Digester performance and techno-economic evaluation. Bioresource Technology, 2021, 338, 125538.	9.6	13
23	Hotel Generated Food Waste and Its Biogas Potential: A Case Study of Jaipur City, India. Waste and Biomass Valorization, 2019, 10, 1459-1468.	3.4	12
24	Bioengineered bioreactors: a review on enhancing biomethane and biohydrogen production by CFD modeling. Bioengineered, 2021, 12, 6418-6433.	3.2	8
25	Linkages between Respiratory Symptoms in Women and Biofuel Use: Regional Case Study of Rajasthan, India. International Journal of Environmental Research and Public Health, 2019, 16, 3594.	2.6	5
26	Food wastes from hospitality sector as versatile bioresources for bio-products: an overview. Journal of Material Cycles and Waste Management, 2020, 22, 955-964.	3.0	4
27	Solid state anaerobic digestion of water poor feedstock for methane yield: an overview of process characteristics and challenges. Waste Disposal & Sustainable Energy, 2021, 3, 227-245.	2.5	2
28	Hydrothermal, acidic, and alkaline pretreatment of waste flower-mix for enhanced biogas production: a comparative assessment. Biomass Conversion and Biorefinery, 0 , 1 .	4.6	1