
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9046136/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Purine nucleotide depletion prompts cell migration by stimulating the serine synthesis pathway. Nature Communications, 2022, 13, 2698.	12.8	25
2	The non-essential TSC complex component TBC1D7 restricts tissue mTORC1 signaling and brain and neuron growth. Cell Reports, 2022, 39, 110824.	6.4	3
3	The mTORC1-mediated activation of ATF4 promotes protein and glutathione synthesis downstream of growth signals. ELife, 2021, 10, .	6.0	105
4	James R. Mitchell (1971–2020). Cell Metabolism, 2021, 33, 458-461.	16.2	0
5	Cancer Signaling Drives Cancer Metabolism: AKT and the Warburg Effect. Cancer Research, 2021, 81, 4896-4898.	0.9	27
6	Hepatic mTORC1 signaling activates ATF4 as part of its metabolic response to feeding and insulin. Molecular Metabolism, 2021, 53, 101309.	6.5	16
7	The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nature Reviews Cancer, 2020, 20, 74-88.	28.4	1,087
8	IMPDH inhibitors for antitumor therapy in tuberous sclerosis complex. JCI Insight, 2020, 5, .	5.0	20
9	Longevity-Extending MetAP2 Inhibitors Induce Caloric Restriction Through P53-Dependent Induction of GDF-15. Innovation in Aging, 2020, 4, 125-126.	0.1	0
10	Late-Onset Pharmacological or Dietary Interventions Improve Healthspan and Lifespan in Male and Female Mice. Innovation in Aging, 2020, 4, 125-125.	0.1	4
11	Signalling protein protects the heart muscle from pressure-related stress. Nature, 2019, 566, 187-188.	27.8	3
12	Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC–MS/MS. Nature Protocols, 2019, 14, 313-330.	12.0	106
13	Molecular logic of mTORC1 signalling as a metabolic rheostat. Nature Metabolism, 2019, 1, 321-333.	11.9	197
14	Direct stimulation of NADP ⁺ synthesis through Akt-mediated phosphorylation of NAD kinase. Science, 2019, 363, 1088-1092.	12.6	85
15	IMPROVED HEALTHSPAN AND LIFESPAN WITH LATE ONSET PHARMACOLOGICAL OR DIETARY INTERVENTIONS IN MICE. Innovation in Aging, 2019, 3, S875-S875.	0.1	1
16	Fibroblastic reticular cells enhance T cell metabolism and survival via epigenetic remodeling. Nature Immunology, 2019, 20, 1668-1680.	14.5	53
17	Amino Acid Restriction Triggers Angiogenesis via GCN2/ATF4 Regulation of VEGF and H2S Production. Cell, 2018, 173, 117-129.e14.	28.9	229
18	Lysosomal catch-and-release controls mTORC1. Nature Cell Biology, 2018, 20, 996-997.	10.3	5

BRENDAN D MANNING

#	Article	IF	CITATIONS
19	Nutrient Sensing in Cancer. Annual Review of Cancer Biology, 2018, 2, 251-269.	4.5	29
20	Metformin Inhibits Hepatic mTORC1 Signaling via Dose-Dependent Mechanisms Involving AMPK and the TSC Complex. Cell Metabolism, 2017, 25, 463-471.	16.2	281
21	A relative quantitative positive/negative ion switching method for untargeted lipidomics via high resolution LC-MS/MS from any biological source. Metabolomics, 2017, 13, 1.	3.0	124
22	mTORC1 signaling and the metabolic control of cell growth. Current Opinion in Cell Biology, 2017, 45, 72-82.	5.4	465
23	AKT/PKB Signaling: Navigating the Network. Cell, 2017, 169, 381-405.	28.9	2,454
24	Splicing factor 1 modulates dietary restriction and TORC1 pathway longevity in C. elegans. Nature, 2017, 541, 102-106.	27.8	152
25	The mTORC1 Signaling Network Senses Changes in Cellular Purine Nucleotide Levels. Cell Reports, 2017, 21, 1331-1346.	6.4	149
26	mTORC1 Couples Nucleotide Synthesis to Nucleotide Demand Resulting in a Targetable Metabolic Vulnerability. Cancer Cell, 2017, 32, 624-638.e5.	16.8	109
27	Game of TOR — The Target of Rapamycin Rules Four Kingdoms. New England Journal of Medicine, 2017, 377, 1297-1299.	27.0	27
28	mTORC1 suppresses PIM3 expression via miR-33 encoded by the SREBP loci. Scientific Reports, 2017, 7, 16112.	3.3	9
29	mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer. Nature, 2017, 547, 109-113.	27.8	142
30	Improved detection of synthetic lethal interactions in <i>Drosophila</i> cells using variable dose analysis (VDA). Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10755-E10762.	7.1	8
31	Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation. ELife, 2016, 5, .	6.0	324
32	Advances and Future Directions for Tuberous Sclerosis Complex Research: Recommendations From the 2015 Strategic Planning Conference. Pediatric Neurology, 2016, 60, 1-12.	2.1	43
33	Sterol Regulatory Element Binding Protein Regulates the Expression and Metabolic Functions of Wild-Type and Oncogenic <i>IDH1</i> . Molecular and Cellular Biology, 2016, 36, 2384-2395.	2.3	25
34	Emerging Role of mTOR in the Response to Cancer Therapeutics. Trends in Cancer, 2016, 2, 241-251.	7.4	95
35	Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through mTORC1 and SREBP. Oncogene, 2016, 35, 1250-1260.	5.9	189

36 Zhang & amp; Manning reply. Nature, 2016, 529, E2-E3.

27.8 11

#	Article	IF	CITATIONS
37	CASTORing New Light on Amino Acid Sensing. Cell, 2016, 165, 15-17.	28.9	14
38	mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science, 2016, 351, 728-733.	12.6	585
39	mTORC1 signaling activates NRF1 to increase cellular proteasome levels. Cell Cycle, 2015, 14, 2011-2017.	2.6	76
40	Tuberous Sclerosis Complex 2 Loss Increases Lysophosphatidylcholine Synthesis in Lymphangioleiomyomatosis. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 33-41.	2.9	30
41	Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi. Science Signaling, 2015, 8, rs9.	3.6	113
42	Abstract IA07: The TSC complex links PI3K to mTOR and cancer metabolism. , 2015, , .		0
43	Spatial Control of the TSC Complex Integrates Insulin and Nutrient Regulation of mTORC1 at the Lysosome. Cell, 2014, 156, 771-785.	28.9	625
44	Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nature Cell Biology, 2014, 16, 1069-1079.	10.3	534
45	ZBTB7A acts as a tumor suppressor through the transcriptional repression of glycolysis. Genes and Development, 2014, 28, 1917-1928.	5.9	109
46	Mechanisms and consequences of hepatic regulation of mTORC1 by metformin. Cancer & Metabolism, 2014, 2, .	5.0	3
47	mTORC1 stimulates nucleotide synthesis through both transcriptional and post-translational mechanisms. Cancer & Metabolism, 2014, 2, .	5.0	3
48	Oncogenic signaling upstream of mTORC1 drives lipogenesis and proliferation through SREBP. Cancer & Metabolism, 2014, 2, .	5.0	0
49	Low-dose radiation exposure induces a HIF-1-mediated adaptive and protective metabolic response. Cell Death and Differentiation, 2014, 21, 836-844.	11.2	75
50	Coordinated regulation of protein synthesis and degradation by mTORC1. Nature, 2014, 513, 440-443.	27.8	292
51	Molecular Basis of Giant Cells in Tuberous Sclerosis Complex. New England Journal of Medicine, 2014, 371, 778-780.	27.0	47
52	The TSC Complex Is Required for the Benefits of Dietary Protein Restriction on Stress Resistance InÂVivo. Cell Reports, 2014, 8, 1160-1170.	6.4	47
53	Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signalling to suppress tumorigenesis. Nature Cell Biology, 2013, 15, 1340-1350.	10.3	216
54	mTORC1 Status Dictates Tumor Response to Targeted Therapeutics. Science Signaling, 2013, 6, pe31.	3.6	34

#	Article	IF	CITATIONS
55	The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Reports, 2013, 14, 242-251.	4.5	219
56	Stimulation of de Novo Pyrimidine Synthesis by Growth Signaling Through mTOR and S6K1. Science, 2013, 339, 1323-1328.	12.6	596
57	Adaptation to Starvation: Translating a Matter of Life or Death. Cancer Cell, 2013, 23, 713-715.	16.8	18
58	Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nature Cell Biology, 2013, 15, 555-564.	10.3	595
59	Nutrient sensing lost in cancer. Nature, 2013, 498, 444-445.	27.8	9
60	The TSC-mTOR pathway regulates macrophage polarization. Nature Communications, 2013, 4, 2834.	12.8	459
61	Metabolic and Functional Genomic Studies Identify Deoxythymidylate Kinase as a Target in <i>LKB1</i> -Mutant Lung Cancer. Cancer Discovery, 2013, 3, 870-879.	9.4	127
62	Phosphatidylcholine Transfer Protein Interacts with Thioesterase Superfamily Member 2 to Attenuate Insulin Signaling. Science Signaling, 2013, 6, ra64.	3.6	23
63	A growing role for mTOR in promoting anabolic metabolism. Biochemical Society Transactions, 2013, 41, 906-912.	3.4	148
64	TBC1D7 Is a Third Subunit of the TSC1-TSC2 Complex Upstream of mTORC1. Molecular Cell, 2012, 47, 535-546.	9.7	509
65	Comment on "A Dynamic Network Model of mTOR Signaling Reveals TSC-Independent mTORC2 Regulation†Building a Model of the mTOR Signaling Network with a Potentially Faulty Tool. Science Signaling, 2012, 5, lc3; author reply lc4.	3.6	11
66	Chronic Activation of mTOR Complex 1 Is Sufficient to Cause Hepatocellular Carcinoma in Mice. Science Signaling, 2012, 5, ra24.	3.6	157
67	Therapeutic Trial of Metformin and Bortezomib in a Mouse Model of Tuberous Sclerosis Complex (TSC). PLoS ONE, 2012, 7, e31900.	2.5	24
68	Abstract SY29-02: The TSC-mTOR pathway and control of anabolic tumor cell metabolism. , 2012, , .		0
69	Akt Stimulates Hepatic SREBP1c and Lipogenesis through Parallel mTORC1-Dependent and Independent Pathways. Cell Metabolism, 2011, 14, 21-32.	16.2	511
70	mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends in Endocrinology and Metabolism, 2011, 22, 94-102.	7.1	280
71	Exploiting Cancer Cell Vulnerabilities to Develop a Combination Therapy for Ras-Driven Tumors. Cancer Cell, 2011, 20, 400-413.	16.8	231
72	mTOR links oncogenic signaling to tumor cell metabolism. Journal of Molecular Medicine, 2011, 89, 221-228.	3.9	158

#	Article	lF	CITATIONS
73	Transcriptional Control of Cellular Metabolism by mTOR Signaling. Cancer Research, 2011, 71, 2815-2820.	0.9	135
74	Oncogenic EGFR Signaling Activates an mTORC2–NF-κB Pathway That Promotes Chemotherapy Resistance. Cancer Discovery, 2011, 1, 524-538.	9.4	275
75	The TSC1–TSC2 Complex. The Enzymes, 2010, 28, 21-48.	1.7	4
76	Activation of a Metabolic Gene Regulatory Network Downstream of mTOR Complex 1. Molecular Cell, 2010, 39, 171-183.	9.7	1,598
77	Chewing the Fat on Tumor Cell Metabolism. Cell, 2010, 140, 28-30.	28.9	26
78	Insulin Signaling: Inositol Phosphates Get into the Akt. Cell, 2010, 143, 861-863.	28.9	26
79	Insulin Stimulates Adipogenesis through the Akt-TSC2-mTORC1 Pathway. PLoS ONE, 2009, 4, e6189.	2.5	306
80	Characterization of Rictor Phosphorylation Sites Reveals Direct Regulation of mTOR Complex 2 by S6K1. Molecular and Cellular Biology, 2009, 29, 5657-5670.	2.3	388
81	NF2/Merlin Is a Novel Negative Regulator of mTOR Complex 1, and Activation of mTORC1 Is Associated with Meningioma and Schwannoma Growth. Molecular and Cellular Biology, 2009, 29, 4250-4261.	2.3	264
82	Challenges and Opportunities in Defining the Essential Cancer Kinome. Science Signaling, 2009, 2, pe15.	3.6	47
83	Signaling Events Downstream of Mammalian Target of Rapamycin Complex 2 Are Attenuated in Cells and Tumors Deficient for the Tuberous Sclerosis Complex Tumor Suppressors. Cancer Research, 2009, 69, 6107-6114.	0.9	102
84	A Molecular Link between AKT Regulation and Chemotherapeutic Response. Cancer Cell, 2009, 16, 178-180.	16.8	26
85	A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochemical Society Transactions, 2009, 37, 217-222.	3.4	623
86	Loss of the Tuberous Sclerosis Complex Tumor Suppressors Triggers the Unfolded Protein Response to Regulate Insulin Signaling and Apoptosis. Molecular Cell, 2008, 29, 541-551.	9.7	389
87	The TSC1–TSC2 complex: a molecular switchboard controlling cell growth. Biochemical Journal, 2008, 412, 179-190.	3.7	1,045
88	The TSC1-TSC2 Complex Is Required for Proper Activation of mTOR Complex 2. Molecular and Cellular Biology, 2008, 28, 4104-4115.	2.3	444
89	The Mammalian Target of Rapamycin Complex 1 Regulates Leptin Biosynthesis in Adipocytes at the Level of Translation: The Role of the 5′-Untranslated Region in the Expression of Leptin Messenger Ribonucleic Acid. Molecular Endocrinology, 2008, 22, 2260-2267.	3.7	20
90	AKT/PKB Signaling: Navigating Downstream. Cell, 2007, 129, 1261-1274.	28.9	5,261

#	Article	IF	CITATIONS
91	S6K1 Regulates GSK3 under Conditions of mTOR-Dependent Feedback Inhibition of Akt. Molecular Cell, 2006, 24, 185-197.	9.7	260
92	The TSC2/mTOR pathway drives endothelial cell transformation induced by the Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. Cancer Cell, 2006, 10, 133-143.	16.8	180
93	Feedback inhibition of Akt signaling limits the growth of tumors lacking Tsc2. Genes and Development, 2005, 19, 1773-1778.	5.9	216
94	Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Human Molecular Genetics, 2005, 14, R251-R258.	2.9	343
95	Correction: Balancing Akt with S6K. Journal of Cell Biology, 2004, 167, 1255-1255.	5.2	2
96	Balancing Akt with S6K. Journal of Cell Biology, 2004, 167, 399-403.	5.2	450
97	Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes and Development, 2004, 18, 2893-2904.	5.9	1,166
98	The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell, 2004, 6, 91-99.	16.8	956
99	Tuberous Sclerosis Complex Gene Products, Tuberin and Hamartin, Control mTOR Signaling by Acting as a GTPase-Activating Protein Complex toward Rheb. Current Biology, 2003, 13, 1259-1268.	3.9	1,047
100	Targeting the PI3K-Akt pathway in human cancer. Cancer Cell, 2003, 4, 257-262.	16.8	1,230
101	Rheb fills a GAP between TSC and TOR. Trends in Biochemical Sciences, 2003, 28, 573-576.	7.5	443
102	United at last: the tuberous sclerosis complex gene products connect the phosphoinositide 3-kinase/Akt pathway to mammalian target of rapamycin (mTOR) signalling. Biochemical Society Transactions, 2003, 31, 573-578.	3.4	204
103	Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13571-13576.	7.1	744
104	Hitting the Target: Emerging Technologies in the Search for Kinase Substrates. Science Signaling, 2002, 2002, pe49-pe49.	3.6	85
105	Identification of the Tuberous Sclerosis Complex-2 Tumor Suppressor Gene Product Tuberin as a Target of the Phosphoinositide 3-Kinase/Akt Pathway. Molecular Cell, 2002, 10, 151-162.	9.7	1,376
106	Drivers and passengers wanted! The role of kinesin-associated proteins. Trends in Cell Biology, 2000, 10, 281-289.	7.9	37
107	The Kar3p Kinesin-related Protein Forms a Novel Heterodimeric Structure with Its Associated Protein Cik1p. Molecular Biology of the Cell, 2000, 11, 2373-2385.	2.1	51
108	Differential Regulation of the Kar3p Kinesin-related Protein by Two Associated Proteins, Cik1p and Vik1p. Journal of Cell Biology, 1999, 144, 1219-1233.	5.2	100

#	Article	IF	CITATIONS
109	The Rho-GEF Rom2p Localizes to Sites of Polarized Cell Growth and Participates in Cytoskeletal Functions in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 1997, 8, 1829-1844.	2.1	94
110	Genomic complexity and plasticity ofBurkholderia cepacia. FEMS Microbiology Letters, 1996, 144, 117-128.	1.8	174