
Javier Gyenge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9046091/publications.pdf Version: 2024-02-01

INVIED OVENCE

#	Article	IF	CITATIONS
1	Increased water use by ponderosa pine plantations in northwestern Patagonia, Argentina compared with native forest vegetation. Forest Ecology and Management, 2008, 255, 753-764.	3.2	72
2	Belowground interactions for water between trees and grasses in a temperate semiarid agroforestry system. Agroforestry Systems, 2008, 74, 185-197.	2.0	47
3	Water flux and canopy conductance of natural versus planted forests in Patagonia, South America. Trees - Structure and Function, 2009, 23, 415-427.	1.9	41
4	A comparison of five methods to assess embolism resistance in trees. Forest Ecology and Management, 2020, 468, 118175.	3.2	39
5	Testing Binkley's hypothesis about the interaction of individual tree water use efficiency and growth efficiency with dominance patterns in open and close canopy stands. Forest Ecology and Management, 2009, 257, 1859-1865.	3.2	38
6	Title is missing!. Agroforestry Systems, 2002, 55, 27-35.	2.0	35
7	Seedling drought stress susceptibility in two deciduous Nothofagus species of NW Patagonia. Trees - Structure and Function, 2010, 24, 443-453.	1.9	30
8	Functional relationships between wood structure and vulnerability to xylem cavitation in races of Eucalyptus globulus differing in wood density. Tree Physiology, 2018, 38, 243-251.	3.1	29
9	Caracterización silvÃcola de ñirantales del norte de la Patagonia para la gestión forestal sostenible. Bosque, 2007, 28, .	0.3	28
10	First insights into the functional role of vasicentric tracheids and parenchyma in eucalyptus species with solitary vessels: do they contribute to xylem efficiency or safety?. Tree Physiology, 2016, 36, 1485-1497.	3.1	28
11	Title is missing!. Agroforestry Systems, 2002, 55, 47-55.	2.0	26
12	Why do Pinus species have different growth dominance patterns than Eucalyptus species? A hypothesis based on differential physiological plasticity. Forest Ecology and Management, 2011, 261, 1061-1068.	3.2	26
13	Environmental and anthropogenic drivers of soil methane fluxes in forests: Global patterns and amongâ€biomes differences. Global Change Biology, 2020, 26, 6604-6615.	9.5	26
14	Leaf and whole-plant water relations of the Patagonian conifer Austrocedrus chilensis (D. Don) Pic. Ser. et Bizzarri: implications on its drought resistance capacity. Annals of Forest Science, 2005, 62, 297-302.	2.0	25
15	Stand density and drought interaction on water relations of Nothofagus antarctica: contribution of forest management to climate change adaptability. Trees - Structure and Function, 2011, 25, 1111-1120.	1.9	23
16	Water relations of ponderosa pines in Patagonia Argentina: implications for local water resources and individual growth. Trees - Structure and Function, 2003, 17, 417-423.	1.9	22
17	Shade acclimation in the forage grass Festuca Pallescens: biomass allocation and foliage orientation. Agroforestry Systems, 2004, 60, 159-166.	2.0	22
18	Testing a hypothesis of the relationship between productivity and water use efficiency in Patagonian forests with native and exotic species. Forest Ecology and Management, 2008, 255, 3281-3287.	3.2	22

JAVIER GYENGE

#	Article	IF	CITATIONS
19	New insights into wood anatomy and function relationships: How Eucalyptus challenges what we already know. Forest Ecology and Management, 2019, 454, 117638.	3.2	20
20	Influence of radiation and drought on gas exchange of Austrocedrus chilensis seedlings. Bosque, 2007, 28, .	0.3	20
21	Decreased rainfall interception balances increased transpiration in exotic ponderosa pine plantations compared with native cypress stands in Patagonia, Argentina. Ecohydrology, 2011, 4, 83-93.	2.4	19
22	Are differences in productivity between native and exotic trees in N.W. Patagonia related to differences in hydraulic conductance?. Trees - Structure and Function, 2008, 22, 483-490.	1.9	18
23	Adaptability to climate change in forestry species: drought effects on growth and wood anatomy of ponderosa pines growing at different competition levels. Forest Systems, 2012, 21, 162.	0.3	18
24	Balance of Competitive and Facilitative Effects of Exotic Trees on a Native Patagonian Grass. Plant Ecology, 2006, 188, 67-76.	1.6	16
25	Growth of Festuca pallescens in Silvopastoral Systems in Patagonia, Part 1: Positive Balance between Competition and Facilitation. Agroforestry Systems, 2006, 66, 259-269.	2.0	14
26	Ecuaciones para la estimación de biomasa aérea y volumen de fuste de algunas especies leñosas nativas en el valle del rÃo Foyel, NO de la Patagonia argentina. Bosque, 2009, 30, .	0.3	13
27	Effects of the time of drought occurrence within the growing season on growth and survival of Pinus ponderosa seedlings. Trees - Structure and Function, 2014, 28, 745.	1.9	13
28	Patterns of resource use efficiency in relation to intra-specific competition, size of the trees and resource availability in ponderosa pine. Forest Ecology and Management, 2014, 312, 231-238.	3.2	13
29	Wood density and anatomy of three Eucalyptus species: implications for hydraulic conductivity. Forest Systems, 2017, 26, e010.	0.3	13
30	Growth of Festuca pallescens in Silvopastoral Systems in Patagonia, Part 2: Parameterization of Models of Stomatal Conductance and Leaf Photosynthesis. Agroforestry Systems, 2006, 66, 271-280.	2.0	11
31	Physiological and morphological short-term responses to light and temperature in two Nothofagus species of Patagonia, South America. Photosynthetica, 2012, 50, 557-569.	1.7	11
32	Effect of stand density and pruning on growth of ponderosa pines in NW Patagonia, Argentina. Agroforestry Systems, 2010, 78, 233-241.	2.0	10
33	Effect of pruning on branch production and water relations in widely spaced ponderosa pines. Agroforestry Systems, 2009, 77, 223-235.	2.0	9
34	Effects of lowâ€density <i>Pinus elliottii</i> (Slash pine) afforestation on environmental conditions and native plant diversity, in the mountains of central Argentina. Applied Vegetation Science, 2018, 21, 442-450.	1.9	9
35	Effects on site water balance of conversion from native mixed forest to Douglas-fir plantation in N.W. Patagonia. New Forests, 2009, 38, 67-80.	1.7	8
36	Responses in growth and physiological traits in two Populus × canadensis clones (â€ĩI-214' and â€ĩI-4 submitted to different irrigation frequencies in central Chile. Forest Ecology and Management, 2019, 449, 117455.	-88') 3.2	8

JAVIER GYENGE

#	Article	IF	CITATIONS
37	Essential Nutrient and Trace Element Foliar Resorption of Two Co-Existing Nothofagus Species Grown Under Different Environmental Conditions in Southern Patagonia. Frontiers in Plant Science, 2019, 10, 1542.	3.6	8
38	Ecophysiological basis of wood formation in ponderosa pine: Linking water flux patterns with wood microdensity variables. Forest Ecology and Management, 2015, 346, 31-40.	3.2	7
39	Physiological status of conifer seedlings treated with radiation, drought and frost stress mitigation techniques: a laboratory assessment. New Forests, 2016, 47, 87-103.	1.7	7
40	Effect of combined stress (salinity + hypoxia) and auxin rooting hormone addition on morphology and growth traits in six Salix spp. clones. New Forests, 2020, 51, 61-80.	1.7	7
41	Short- and long-term responses to seasonal drought in ponderosa pines growing at different plantation densities in Patagonia, South America. Trees - Structure and Function, 2012, 26, 1905-1917.	1.9	6
42	INFLUENCE OF SOIL TEXTURE, CLIMATE AND VEGETATION COVER ON SECONDARY SOIL SALINIZATION IN PAMPAS PLAINS, SOUTH AMERICA. Cerne, 2020, 26, 212-221.	0.9	6
43	Morpho-physiological response to vertically heterogeneous soil salinity of two glycophyte woody taxa, Salix matsudana x S. alba and Eucalyptus camaldulensis Dehnh. Plant and Soil, 2017, 416, 343-360.	3.7	5
44	Evidence on the response of Patagonian forage grasses to the mulching effect of recent tephra deposits in Argentina. Arid Land Research and Management, 2017, 31, 373-387.	1.6	5
45	Within-crown acclimation of leaf-level physiological and morphological parameters in young loblolly pine stands. Trees - Structure and Function, 2017, 31, 1849-1857.	1.9	5
46	Production of Fodder in a Treeless System and in Silvopastoral System in Central Argentina. Floresta E Ambiente, 2019, 26, .	0.4	5
47	Modeling forest site productivity using climate data and topographic imagery in Pinus elliottii plantations of central Argentina. Annals of Forest Science, 2020, 77, 1.	2.0	5
48	Impact of land use change on soil methane fluxes and diffusivity in Pampean plains, Argentina. Agriculture, Ecosystems and Environment, 2022, 329, 107866.	5.3	5
49	Modeling leaf maximum net photosynthetic rate of Festuca pallescens, the dominant perennial grass of Patagonian pine-based silvopastoral systems. Agroforestry Systems, 2011, 83, 13-24.	2.0	4
50	Thinking in the sustainability of Nothofagus antarctica silvopastoral systems, how differ the responses of seedlings from different provenances to water shortage?. Agroforestry Systems, 2019, 93, 689-701.	2.0	4
51	Is forage productivity of meadows influenced by the afforestation of upstream hillsides? A study in NW Patagonia. Forest Systems, 2011, 20, 165.	0.3	4
52	Does forest management affect the magnitude and direction of the afforestation effect on soil methane fluxes? A meta-analysis. Forest Ecology and Management, 2022, 507, 120009.	3.2	4
53	Afforestations and wetlands, are they a good combination? Study of water fluxes in two cases of Patagonian wetlands. Ecohydrology, 2015, 8, 416-425.	2.4	3
54	A process-based numerical approach to estimate forest groundwater consumption in flatland petrocalcic soils. Journal of Hydroinformatics, 2019, 21, 1130-1146.	2.4	3

Javier Gyenge

#	Article	IF	CITATIONS
55	High Methane Uptake from Soils of Low and High Density Radiata Pine Afforestations Compared to Herbaceous Systems. Journal of Sustainable Forestry, 2021, 40, 99-109.	1.4	3
56	Prediction of post-thinning stem volume in slash pine stands by means of state and transition models. New Forests, 2019, 50, 663-676.	1.7	2
57	Yield stability and phenotypic plasticity of Populus spp. clones growing in environmental gradients: I-yield stability under field conditions. Forest Ecology and Management, 2020, 463, 117995.	3.2	2
58	Binomial sampling plans for the spotted alfalfa aphid, Therioaphis trifolii, in Argentina. International Journal of Pest Management, 1998, 44, 235-238.	1.8	1
59	STAND DENSITY MANAGEMENT DIAGRAMS OF Eucalyptus viminalis: PREDICTING STEM VOLUME, BIOMASS AND CANOPY COVER FOR DIFFERENT PRODUCTION PURPOSES. Cerne, 2019, 25, 463-472.	0.9	1
60	Water consumption and preliminary crop coefficients of two Populus ×canadensis clones (â€ĩI-214' and) 1	j ETQq0 0	0 rgBT /Overl

61 PRODUCCIÓN PRIMARIA NETA AÉREA DEL COMPONENTE HERBÃCEO DE SISTEMAS SILVOPASTORILES EN LA O LLANURA ONDULADA DEL SUR DE CÓRDOBA. , 0, , 55-64.

Tree–Grass Interactions and Water Use in Silvopastoral Systems in N.W. Patagonia. , 2007, , 171-180.