List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9045579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Short Sleep Duration as a Risk Factor for Hypertension. Hypertension, 2006, 47, 833-839.	1.3	1,078
2	Hypothalamic integration of central and peripheral clocks. Nature Reviews Neuroscience, 2001, 2, 521-526.	4.9	492
3	Sleep Duration as a Risk Factor for Diabetes Incidence in a Large US Sample. Sleep, 2007, 30, 1667-1673.	0.6	487
4	Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. European Journal of Neuroscience, 1999, 11, 1535-1544.	1.2	413
5	Daily Nighttime Melatonin Reduces Blood Pressure in Male Patients With Essential Hypertension. Hypertension, 2004, 43, 192-197.	1.3	389
6	The suprachiasmatic nucleus balances sympathetic and parasympathetic output to peripheral organs through separate preautonomic neurons. Journal of Comparative Neurology, 2003, 464, 36-48.	0.9	316
7	Selective parasympathetic innervation of subcutaneous and intra-abdominal fat — functional implications. Journal of Clinical Investigation, 2002, 110, 1243-1250.	3.9	291
8	A Daily Rhythm in Glucose Tolerance. Diabetes, 2001, 50, 1237-1243.	0.3	286
9	Parasympathetic and sympathetic control of the pancreas: A role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. Journal of Comparative Neurology, 2001, 431, 405-423.	0.9	280
10	Food Intake during the Normal Activity Phase Prevents Obesity and Circadian Desynchrony in a Rat Model of Night Work. Endocrinology, 2010, 151, 1019-1029.	1.4	270
11	A Diurnal Rhythm of Stimulatory Input to the Hypothalamo–Pituitary–Adrenal System as Revealed by Timed Intrahypothalamic Administration of the Vasopressin V1Antagonist. Journal of Neuroscience, 1996, 16, 5555-5565.	1.7	247
12	Output pathways of the mammalian suprachiasmatic nucleus: coding circadian time by transmitter selection and specific targeting. Cell and Tissue Research, 2002, 309, 109-118.	1.5	215
13	Suprachiasmatic GABAergic Inputs to the Paraventricular Nucleus Control Plasma Glucose Concentrations in the Rat via Sympathetic Innervation of the Liver. Journal of Neuroscience, 2004, 24, 7604-7613.	1.7	211
14	Evidence for a direct neuronal pathway from the suprachiasmatic nucleus to the gonadotropin-releasing hormone system: Combined tracing and light and electron microscopic immunocytochemical studies. Journal of Comparative Neurology, 1997, 384, 569-579.	0.9	210
15	Vasopressin-containing neurons of the suprachiasmatic nuclei inhibit corticosterone release. Brain Research, 1992, 580, 62-67. Postoperative ileus is maintained by intestinal immune infiltrates that activate inhibitory neural	1.1	208
16	pathways in mice1 1The authors thank Prof. Yvette van Kooyk, Department of Molecular Cell Biology, Free University, Amsterdam, for her gift of blocking antibodies; Drs. Formijn van Hemert and Cynara Veeris, Department of Nuclear Medicine, Academic Medical Center, Amsterdam, for their assistance in the gastric emptying studies; and Dr. Jan M. Ruijter, Department of Anatomy and Embryology, Academic	0.6	191
17	Medical Cente Castroenterology, 2003, 125, 1137-1147 Lesions of the Suprachiasmatic Nucleus Indicate the Presence of a Direct Vasoactive Intestinal Polypeptide-Containing Projection to Gonadotrophin-Releasing Hormone Neurons in the Female Rat. Journal of Neuroendocrinology, 1993, 5, 137-144.	1.2	163
18	Suprachiasmatic control of melatonin synthesis in rats: inhibitory and stimulatory mechanisms. European Journal of Neuroscience, 2003, 17, 221-228.	1.2	163

#	Article	IF	CITATIONS
19	Tracing from Fat Tissue, Liver, and Pancreas: A Neuroanatomical Framework for the Role of the Brain in Type 2 Diabetes. Endocrinology, 2006, 147, 1140-1147.	1.4	162
20	The suprachiasmatic nucleus controls the daily variation of plasma glucose via the autonomic output to the liver: are the clock genes involved?. European Journal of Neuroscience, 2005, 22, 2531-2540.	1.2	154
21	Ventromedial Arcuate Nucleus Communicates Peripheral Metabolic Information to the Suprachiasmatic Nucleus. Endocrinology, 2006, 147, 283-294.	1.4	154
22	Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines intensity of food anticipatory behavior. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5813-5818.	3.3	154
23	Organization of circadian functions: interaction with the body. Progress in Brain Research, 2006, 153, 341-360.	0.9	152
24	Sleep duration associated with mortality in elderly, but not middle-aged, adults in a large US sample. Sleep, 2008, 31, 1087-96.	0.6	150
25	The integration of stress by the hypothalamus, amygdala and prefrontal cortex: balance between the autonomic nervous system and the neuroendocrine system. Progress in Brain Research, 2000, 126, 117-132.	0.9	148
26	Projections of the suprachiasmatic nucleus to stress-related areas in the rat hypothalamus: A light and electron microscopic study. Journal of Comparative Neurology, 1993, 335, 42-54.	0.9	143
27	Polysynaptic neural pathways between the hypothalamus, including the suprachiasmatic nucleus, and the liver. Brain Research, 2000, 871, 50-56.	1.1	138
28	Shift Work or Food Intake during the Rest Phase Promotes Metabolic Disruption and Desynchrony of Liver Genes in Male Rats. PLoS ONE, 2013, 8, e60052.	1.1	131
29	Hypothesis: Shifting the Equilibrium From Activity to Food Leads to Autonomic Unbalance and the Metabolic Syndrome. Diabetes, 2003, 52, 2652-2656.	0.3	124
30	Decrease of Endogenous Vasopressin Release Necessary for Expression of the Circadian Rise in Plasma Corticosterone: a Reverse Microdialysis Study. Journal of Neuroendocrinology, 1996, 8, 299-307.	1.2	121
31	The Circadian System: A Regulatory Feedback Network of Periphery and Brain. Physiology, 2016, 31, 170-181.	1.6	115
32	Neuropeptide changes in the suprachiasmatic nucleus in primary hypertension indicate functional impairment of the biological clock. Journal of Comparative Neurology, 2001, 431, 320-330.	0.9	105
33	Effects of Nocturnal Light on (Clock) Gene Expression in Peripheral Organs: A Role for the Autonomic Innervation of the Liver. PLoS ONE, 2009, 4, e5650.	1.1	104
34	Circadian disruption and SCN control of energy metabolism. FEBS Letters, 2011, 585, 1412-1426.	1.3	101
35	Melatonin attenuates antipsychotic metabolic effects: an eightâ€week randomized, doubleâ€blind, parallelâ€group, placeboâ€controlled clinical trial. Bipolar Disorders, 2014, 16, 410-421. 	1.1	99
36	Novel environment induced inhibition of corticosterone secretion: physiological evidence for a suprachiasmatic nucleus mediated neuronal hypothalamo-adrenal cortex pathway. Brain Research, 1997, 758, 229-236.	1.1	97

#	Article	IF	CITATIONS
37	Spleen Vagal Denervation Inhibits the Production of Antibodies to Circulating Antigens. PLoS ONE, 2008, 3, e3152.	1.1	96
38	Postmortem tracing reveals the organization of hypothalamic projections of the suprachiasmatic nucleus in the human brain. , 1998, 400, 87-102.		93
39	Cardiovascular Control by the Suprachiasmatic Nucleus: Neural and Neuroendocrine Mechanisms in Human and Rat. Biological Chemistry, 2003, 384, 697-709.	1.2	92
40	Functional neuroanatomy of the prefrontal cortex: autonomic interactions. Progress in Brain Research, 2000, 126, 49-62.	0.9	91
41	Colocalization of ?-aminobutyric acid with vasopressin, vasoactive intestinal peptide, and somatostatin in the rat suprachiasmatic nucleus. Journal of Comparative Neurology, 1995, 358, 343-352.	0.9	88
42	Daily Rhythms in Metabolic Liver Enzymes and Plasma Glucose Require a Balance in the Autonomic Output to the Liver. Endocrinology, 2008, 149, 1914-1925.	1.4	88
43	Effects of Scn Lesions on Orcadian Blood Pressure Rhythm in Normotensive and Transgenic Hypertensive Rats. Chronobiology International, 1998, 15, 135-145.	0.9	87
44	The stimulatory effect of vasopressin on the luteinizing hormone surge in ovariectomized, estradiol-treated rats is time-dependent. Brain Research, 2001, 901, 109-116.	1.1	87
45	Paraventricular nucleus of the human hypothalamus in primary hypertension: Activation of corticotropin-releasing hormone neurons. Journal of Comparative Neurology, 2002, 443, 321-331.	0.9	86
46	Opposite actions of hypothalamic vasopressin on circadian corticosterone rhythm in nocturnal versus diurnal species. European Journal of Neuroscience, 2008, 27, 818-827.	1.2	79
47	Distribution of vasopressin and vasoactive intestinal polypeptide (VIP) fibers in the human hypothalamus with special emphasis on suprachiasmatic nucleus efferent projections. , 1997, 383, 397-414.		78
48	The circadian system and the balance of the autonomic nervous system. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 117, 173-191.	1.0	77
49	Glutamatergic clock output stimulates melatonin synthesis at night. European Journal of Neuroscience, 2004, 19, 318-324.	1.2	69
50	Light and diurnal cycle affect autonomic cardiac balance in human; possible role for the biological clock. Autonomic Neuroscience: Basic and Clinical, 2004, 110, 44-48.	1.4	69
51	Suprachiasmatic Nucleus Interaction with the Arcuate Nucleus; Essential for Organizing Physiological Rhythms. ENeuro, 2017, 4, ENEURO.0028-17.2017.	0.9	63
52	Glucocorticoid Signaling in the Arcuate Nucleus Modulates Hepatic Insulin Sensitivity. Diabetes, 2012, 61, 339-345.	0.3	59
53	Reciprocal interaction between the suprachiasmatic nucleus and the immune system tunes down the inflammatory response to lipopolysaccharide. Journal of Neuroimmunology, 2014, 273, 22-30.	1.1	53
54	A circulating ghrelin mimetic attenuates lightâ€induced phase delay of mice and lightâ€induced Fos expression in the suprachiasmatic nucleus of rats. European Journal of Neuroscience, 2008, 27, 1965-1972.	1.2	52

#	Article	IF	CITATIONS
55	Minireview: Circadian Control of Metabolism by the Suprachiasmatic Nuclei. Endocrinology, 2007, 148, 5635-5639.	1.4	50
56	In a Rat Model of Night Work, Activity during the Normal Resting Phase Produces Desynchrony in the Hypothalamus. Journal of Biological Rhythms, 2010, 25, 421-431.	1.4	50
57	Role of the Suprachiasmatic and Arcuate Nuclei in Diurnal Temperature Regulation in the Rat. Journal of Neuroscience, 2015, 35, 15419-15429.	1.7	49
58	The Metabolic Syndrome: A Brain Disease?. Journal of Neuroendocrinology, 2006, 18, 715-716.	1.2	45
59	The suprachiasmatic nucleus; a responsive clock regulating homeostasis by daily changing the setpoints of physiological parameters. Autonomic Neuroscience: Basic and Clinical, 2019, 218, 43-50.	1.4	43
60	Evidence for parasympathetic innervation of white adipose tissue, clearing up some vagaries. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R548-R549.	0.9	38
61	The autonomic nervous system. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 117, 1-11.	1.0	38
62	Shift Work in Rats Results in Increased Inflammatory Response after Lipopolysaccharide Administration. Journal of Biological Rhythms, 2015, 30, 318-330.	1.4	35
63	Shift-work: is time of eating determining metabolic health? Evidence from animal models. Proceedings of the Nutrition Society, 2018, 77, 199-215.	0.4	35
64	Social jet-lag potentiates obesity and metabolic syndrome when combined with cafeteria diet in rats. Metabolism: Clinical and Experimental, 2017, 72, 83-93.	1.5	34
65	Circadian disruption promotes tumor growth by anabolic host metabolism; experimental evidence in a rat model. BMC Cancer, 2017, 17, 625.	1.1	34
66	Loss of arginine vasopressin- and vasoactive intestinal polypeptide-containing neurons and glial cells in the suprachiasmatic nucleus of individuals with type 2 diabetes. Diabetologia, 2019, 62, 2088-2093.	2.9	34
67	Interaction between the hypothalamus and the immune system. Experimental Physiology, 2016, 101, 1463-1471.	0.9	33
68	Recovery of axonal transport in "dead neurons― Lancet, The, 1998, 351, 499-500.	6.3	29
69	The Arcuate Nucleus: A Site of Fast Negative Feedback for Corticosterone Secretion in Male Rats. ENeuro, 2017, 4, ENEURO.0350-16.2017.	0.9	27
70	When to eat? The influence of circadian rhythms on metabolic health: are animal studies providing the evidence?. Nutrition Research Reviews, 2016, 29, 180-193.	2.1	25
71	Chocolate for breakfast prevents circadian desynchrony in experimental models of jet-lag and shift-work. Scientific Reports, 2020, 10, 6243.	1.6	25
72	Vasopressin (VP) and neuropeptide FF (NPFF) systems in the normal and hypertensive human brainstem. Journal of Comparative Neurology, 2011, 519, 93-124.	0.9	21

#	Article	IF	CITATIONS
73	Food in synchrony with melatonin and corticosterone relieves constant light disturbed metabolism. Journal of Endocrinology, 2017, 235, 167-178.	1.2	21
74	Suprachiasmatic Nucleus–Arcuate Nucleus Axis: Interaction Between Time and Metabolism Essential for Health. Obesity, 2020, 28, S10-S17.	1.5	19
75	Corticosterone and Activity: The Long Arms of the Clock Talk Back. Endocrinology, 2007, 148, 5162-5164.	1.4	18
76	The circadian system: From clocks to physiology. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 179, 233-247.	1.0	18
77	Vasopressin: An output signal from the suprachiasmatic nucleus to prepare physiology and behaviour for the resting phase. Journal of Neuroendocrinology, 2021, 33, e12998.	1.2	17
78	Olanzapineâ€induced early cardiovascular effects are mediated by the biological clock and prevented by melatonin. Journal of Pineal Research, 2017, 62, e12402.	3.4	15
79	Neuropeptide FF distribution in the human and rat forebrain: A comparative immunohistochemical study. Journal of Comparative Neurology, 2006, 496, 572-593.	0.9	14
80	NPY and VGF Immunoreactivity Increased in the Arcuate Nucleus, but Decreased in the Nucleus of the Tractus Solitarius, of Type-II Diabetic Patients. PLoS ONE, 2012, 7, e40070.	1.1	14
81	Suprachiasmatic nucleus-mediated glucose entry into the arcuate nucleus determines the daily rhythm in blood glycemia. Current Biology, 2022, 32, 796-805.e4.	1.8	14
82	Food entrains clock genes but not metabolic genes in the liver of suprachiasmatic nucleus lesioned rats. FEBS Letters, 2014, 588, 3104-3110.	1.3	13
83	The suprachiasmatic nucleus drives day–night variations in postprandial triglyceride uptake into skeletal muscle and brown adipose tissue. Experimental Physiology, 2017, 102, 1584-1595.	0.9	11
84	Organization of the neuroendocrine and autonomic hypothalamic paraventricular nucleus. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 180, 45-63.	1.0	11
85	Functional changes of the SCN in spontaneous hypertension but not after the induction of hypertension. Chronobiology International, 2018, 35, 1221-1235.	0.9	7
86	Neuropeptide changes in the suprachiasmatic nucleus are associated with the development of hypertension. Chronobiology International, 2019, 36, 1072-1087.	0.9	7
87	Synchrony between suprachiasmatic nucleusâ€driven signals and the light/dark cycle is essential for liver homeostasis. Hepatology, 2017, 65, 2110-2112.	3.6	4
88	Regulatory peptides and systems biology: A new era of translational and reverseâ€ŧranslational neuroendocrinology. Journal of Neuroendocrinology, 2020, 32, e12844.	1.2	4
89	Time-of-Day-Dependent Gating of the Liver-Spinal Axis Initiates an Anti-Inflammatory Reflex in the Rat. ENeuro, 2020, 7, ENEURO.0463-20.2020.	0.9	3
90	Lack of food intake during shift work alters the heart transcriptome and leads to cardiac tissue fibrosis and inflammation in rats. BMC Biology, 2022, 20, 58.	1.7	3

#	Article	IF	CITATIONS
91	The use of melatonin to mitigate the adverse metabolic side effects of antipsychotics. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 179, 371-382.	1.0	1
92	Minor Changes in Daily Rhythms Induced by a Skeleton Photoperiod Are Associated with Increased Adiposity and Glucose Intolerance. Advanced Biology, 0, , 2200116.	1.4	1
93	Editorial for RegPep2020 special issue. Journal of Neuroendocrinology, 2021, 33, e13009.	1.2	0
94	Early changes of immunoreactivity to orexin in hypothalamus and to RFamide peptides in brainstem during the development of hypertension. Neuroscience Letters, 2021, 762, 136144.	1.0	0
95	Time-of-Day-Dependent Gating of the Liver-Spinal Axis Initiates an Anti-Inflammatory Reflex in the Rat. ENeuro, 2020, 7, .	0.9	0