
Tamas Banyasz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9045382/publications.pdf Version: 2024-02-01

TAMAS RANVASZ

#	Article	IF	CITATIONS
1	Apico?basal inhomogeneity in distribution of ion channels in canine and human ventricular myocardium. Cardiovascular Research, 2005, 65, 851-860.	1.8	149
2	Mechanochemotransduction During Cardiomyocyte Contraction Is Mediated by Localized Nitric Oxide Signaling. Science Signaling, 2014, 7, ra27.	1.6	128
3	Dynamics of the late Na+ current during cardiac action potential and its contribution to afterdepolarizations. Journal of Molecular and Cellular Cardiology, 2013, 64, 59-68.	0.9	86
4	Endocardial versus epicardial differences in L-type calcium current in canine ventricular myocytes studied by action potential voltage clamp. Cardiovascular Research, 2003, 58, 66-75.	1.8	78
5	Potassium currents in the heart: functional roles in repolarization, arrhythmia and therapeutics. Journal of Physiology, 2017, 595, 2229-2252.	1.3	76
6	Complex electrophysiological remodeling in postinfarction ischemic heart failure. Proceedings of the United States of America, 2018, 115, E3036-E3044.	3.3	72
7	Sequential dissection of multiple ionic currents in single cardiac myocytes under action potential-clamp. Journal of Molecular and Cellular Cardiology, 2011, 50, 578-581.	0.9	57
8	Î ² -adrenergic regulation of late Na+ current during cardiac action potential is mediated by both PKA and CaMKII. Journal of Molecular and Cellular Cardiology, 2018, 123, 168-179.	0.9	55
9	Reverse rate dependency is an intrinsic property of canine cardiac preparations. Cardiovascular Research, 2009, 84, 237-244.	1.8	54
10	Reverse rate-dependent changes are determined by baseline action potential duration in mammalian and human ventricular preparations. Basic Research in Cardiology, 2010, 105, 315-323.	2.5	51
11	Beta-adrenergic stimulation reverses the I Kr–I Ks dominant pattern during cardiac action potential. Pflugers Archiv European Journal of Physiology, 2014, 466, 2067-2076.	1.3	44
12	Calcium Handling Defects and Cardiac Arrhythmia Syndromes. Frontiers in Pharmacology, 2020, 11, 72.	1.6	44
13	Contribution of ion currents to beat-to-beat variability of action potential duration in canine ventricular myocytes. Pflugers Archiv European Journal of Physiology, 2015, 467, 1431-1443.	1.3	40
14	Profile of L-type Ca2+ current and Na+/Ca2+ exchange current during cardiac action potential in ventricular myocytes. Heart Rhythm, 2012, 9, 134-142.	0.3	39
15	Late Sodium Current Inhibitors as Potential Antiarrhythmic Agents. Frontiers in Pharmacology, 2020, 11, 413.	1.6	38
16	Frequency-dependent effects of omecamtiv mecarbil on cell shortening of isolated canine ventricular cardiomyocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 1239-1246.	1.4	33
17	Mechanoâ€electric and mechanoâ€chemoâ€transduction in cardiomyocytes. Journal of Physiology, 2020, 598, 1285-1305.	1.3	30
18	Enhanced Depolarization Drive in Failing Rabbit Ventricular Myocytes. Circulation: Arrhythmia and Electrophysiology, 2019, 12, e007061.	2.1	29

TAMAS BANYASZ

#	Article	IF	CITATIONS
19	KN-93 inhibits IKr in mammalian cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2015, 89, 173-176.	0.9	28
20	Tetrodotoxin blocks L-type Ca2+ channels in canine ventricular cardiomyocytes. Pflugers Archiv European Journal of Physiology, 2012, 464, 167-174.	1.3	21
21	Sarcolemmal Ca 2+ -entry through L-type Ca 2+ channels controls the profile of Ca 2+ -activated Cl â^' current in canine ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2016, 97, 125-139.	0.9	20
22	Late sodium current in human, canine and guinea pig ventricular myocardium. Journal of Molecular and Cellular Cardiology, 2020, 139, 14-23.	0.9	20
23	Transient receptor potential melastatin 4 channel inhibitor 9-phenanthrol inhibits K ⁺ but not Ca ²⁺ currents in canine ventricular myocytes. Canadian Journal of Physiology and Pharmacology, 2018, 96, 1022-1029.	0.7	19
24	Ca2+-activated Clâ^' current is antiarrhythmic by reducing both spatial and temporal heterogeneity of cardiac repolarization. Journal of Molecular and Cellular Cardiology, 2017, 109, 27-37.	0.9	18
25	Different effects of endothelin-1 on calcium and potassium currents in canine ventricular cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 363, 383-390.	1.4	16
26	Balance Between Rapid Delayed Rectifier K ⁺ Current and Late Na ⁺ Current on Ventricular Repolarization. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e008130.	2.1	16
27	Asynchronous activation of calcium and potassium currents by isoproterenol in canine ventricular myocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2014, 387, 457-467.	1.4	15
28	Divergent action potential morphologies reveal nonequilibrium properties of human cardiac Na channels. Cardiovascular Research, 2004, 64, 477-487.	1.8	14
29	Cytosolic calcium changes affect the incidence of early afterdepolarizations in canine ventricular myocytes. Canadian Journal of Physiology and Pharmacology, 2015, 93, 527-534.	0.7	13
30	Therapeutic Approaches of Ryanodine Receptor-Associated Heart Diseases. International Journal of Molecular Sciences, 2022, 23, 4435.	1.8	13
31	Electrophysiological Determination of Submembrane Na + Concentration in Cardiac Myocytes. Biophysical Journal, 2016, 111, 1304-1315.	0.2	12
32	Canine Myocytes Represent a Good Model for Human Ventricular Cells Regarding Their Electrophysiological Properties. Pharmaceuticals, 2021, 14, 748.	1.7	12
33	Chemistry, Physiology, and Pharmacology of βAdrenergic Mechanisms in the Heart. Why are .β-Blocker Antiarrhythmics Superior?. Current Pharmaceutical Design, 2014, 21, 1030-1041.	0.9	12
34	Electrophysiological effects of EGIS-7229, a new antiarrhythmic agent, in isolated mammalian and human cardiac tissues. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 355, 398-405.	1.4	11
35	lon current profiles in canine ventricular myocytes obtained by the "onion peeling―technique. Journal of Molecular and Cellular Cardiology, 2021, 158, 153-162.	0.9	11
36	Mechanical Load Regulates Excitation-Ca ²⁺ Signaling-Contraction in Cardiomyocyte. Circulation Research, 2021, 128, 772-774.	2.0	9

TAMAS BANYASZ

#	Article	IF	CITATIONS
37	Mexiletine-like cellular electrophysiological effects of GS967 in canine ventricular myocardium. Scientific Reports, 2021, 11, 9565.	1.6	8
38	Electrophysiological Effects of the Transient Receptor Potential Melastatin 4 Channel Inhibitor (4-Chloro-2-(2-chlorophenoxy)acetamido) Benzoic Acid (CBA) in Canine Left Ventricular Cardiomyocytes. International Journal of Molecular Sciences, 2021, 22, 9499.	1.8	8
39	Evaluation of apoptosis and cell proliferation in experimentally induced renal cysts. Urological Research, 1998, 26, 411-416.	1.5	7
40	Profile of IKs During the Action Potential Questions the Therapeutic Value of IKs Blockade. Current Medicinal Chemistry, 2004, 11, 45-60.	1.2	7
41	Oxidative shift in tissue redox potential increases beat-to-beat variability of action potential duration. Canadian Journal of Physiology and Pharmacology, 2015, 93, 563-568.	0.7	7
42	Biphasic effect of bimoclomol on calcium handling in mammalian ventricular myocardium. British Journal of Pharmacology, 2000, 129, 1405-1412.	2.7	6
43	Altered K+ current profiles underlie cardiac action potential shortening in hyperkalemia and β-adrenergic stimulation. Canadian Journal of Physiology and Pharmacology, 2019, 97, 773-780.	0.7	6
44	Recording of Ionic Currents Under Physiological Conditions: Action Potential-Clamp and â€~Onion-Peeling' Techniques. , 2017, , 31-48.		6
45	Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channel—Part 2: TRPM4 in Health and Disease. Pharmaceuticals, 2022, 15, 40.	1.7	6
46	Effects of the antiarrhythmic agent EGIS-7229 (S 21407) on calcium and potassium currents in canine ventricular cardiomyocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 363, 604-611.	1.4	5
47	Late Sodium Current of the Heart: Where Do We Stand and Where Are We Going?. Pharmaceuticals, 2022, 15, 231.	1.7	5
48	Implication of frequency-dependent protocols in antiarrhythmic and proarrhythmic drug testing. Progress in Biophysics and Molecular Biology, 2020, 157, 76-83.	1.4	4
49	Late Na+ Current Is [Ca2+]i-Dependent in Canine Ventricular Myocytes. Pharmaceuticals, 2021, 14, 1142.	1.7	4
50	Emergence of Mechano-Sensitive Contraction Autoregulation in Cardiomyocytes. Life, 2021, 11, 503.	1.1	2
51	Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channel—Part 1: Modulation of TRPM4. Pharmaceuticals, 2022, 15, 81.	1.7	2
52	Exploring the Coordination of Cardiac Ion Channels With Action Potential Clamp Technique. Frontiers in Physiology, 2022, 13, 864002.	1.3	2
53	Optimizing Population Variability to Maximize Benefit. PLoS ONE, 2015, 10, e0143475.	1.1	0