List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9045284/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A General Theory of Turbulenceâ€regulated Star Formation, from Spirals to Ultraluminous Infrared Galaxies. Astrophysical Journal, 2005, 630, 250-268.	1.6	794
2	Slow Star Formation in Dense Gas: Evidence and Implications. Astrophysical Journal, 2007, 654, 304-315.	1.6	521
3	The Formation of Massive Star Systems by Accretion. Science, 2009, 323, 754-757.	6.0	467
4	COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies - I. Relations between H2, H i, stellar content and structural properties. Monthly Notices of the Royal Astronomical Society, 2011, 415, 32-60.	1.6	418
5	A UNIVERSAL, LOCAL STAR FORMATION LAW IN GALACTIC CLOUDS, NEARBY GALAXIES, HIGH-REDSHIFT DISKS, AND STARBURSTS. Astrophysical Journal, 2012, 745, 69.	1.6	417
6	THE ATOMIC-TO-MOLECULAR TRANSITION IN GALAXIES. II: H I AND H ₂ COLUMN DENSITIES. Astrophysical Journal, 2009, 693, 216-235.	1.6	364
7	Star Clusters Across Cosmic Time. Annual Review of Astronomy and Astrophysics, 2019, 57, 227-303.	8.1	363
8	THE STAR FORMATION LAW IN ATOMIC AND MOLECULAR GAS. Astrophysical Journal, 2009, 699, 850-856.	1.6	342
9	Radiationâ€Hydrodynamic Simulations of Collapse and Fragmentation in Massive Protostellar Cores. Astrophysical Journal, 2007, 656, 959-979.	1.6	313
10	COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies - II. The non-universality of the molecular gas depletion time-scale. Monthly Notices of the Royal Astronomical Society, 2011, 415, 61-76.	1.6	313
11	THE MOSFIRE DEEP EVOLUTION FIELD (MOSDEF) SURVEY: REST-FRAME OPTICAL SPECTROSCOPY FOR â^1/41500 <i>H</i> -SELECTED GALAXIES AT \$1.37leqslant zleqslant 3.8\$. Astrophysical Journal, Supplement Series, 2015, 218, 15.	3.0	312
12	A general model for the CO-H2 conversion factor in galaxies with applications to the star formation law. Monthly Notices of the Royal Astronomical Society, 2012, 421, 3127-3146.	1.6	298
13	A minimum column density of 1 g cm-2 for massive star formation. Nature, 2008, 451, 1082-1084.	13.7	262
14	THE EFFECTS OF RADIATIVE TRANSFER ON LOW-MASS STAR FORMATION. Astrophysical Journal, 2009, 703, 131-149.	1.6	254
15	THE DYNAMICS OF RADIATION-PRESSURE-DOMINATED H II REGIONS. Astrophysical Journal, 2009, 703, 1352-1362.	1.6	250
16	ON THE ROLE OF DISKS IN THE FORMATION OF STELLAR SYSTEMS: A NUMERICAL PARAMETER STUDY OF RAPID ACCRETION. Astrophysical Journal, 2010, 708, 1585-1597.	1.6	250
17	A COMPARISON OF METHODS FOR DETERMINING THE MOLECULAR CONTENT OF MODEL GALAXIES. Astrophysical Journal, 2011, 729, 36.	1.6	249
18	The big problems in star formation: The star formation rate, stellar clustering, and the initial mass function. Physics Reports, 2014, 539, 49-134.	10.3	248

#	Article	IF	CITATIONS
19	The intense starburst HDF 850.1 in a galaxy overdensity at z â‰^ 5.2 in the Hubble Deep Field. Na 486, 233-236.	ture, 2012, 13.7	226
20	Embedding Lagrangian Sink Particles in Eulerian Grids. Astrophysical Journal, 2004, 611, 399-412.	1.6	210
21	THE FORMATION OF LOW-MASS BINARY STAR SYSTEMS VIA TURBULENT FRAGMENTATION. Astrophysical Journal, 2010, 725, 1485-1494.	1.6	198
22	A unified model for galactic discs: star formation, turbulence driving, and mass transport. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2716-2740.	1.6	191
23	Equilibrium Star Cluster Formation. Astrophysical Journal, 2006, 641, L121-L124.	1.6	190
24	THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. Astrophysical Journal, Supplement Series, 2014, 210, 14.	3.0	185
25	The Atomicâ€ŧoâ€Molecular Transition in Galaxies. I. An Analytic Approximation for Photodissociation Fronts in Finite Clouds. Astrophysical Journal, 2008, 689, 865-882.	1.6	181
26	RADIATION-HYDRODYNAMIC SIMULATIONS OF THE FORMATION OF ORION-LIKE STAR CLUSTERS. II. THE INITIAL MASS FUNCTION FROM WINDS, TURBULENCE, AND RADIATION. Astrophysical Journal, 2012, 754, 71.	1.6	178
27	STELLAR FEEDBACK IN MOLECULAR CLOUDS AND ITS INFLUENCE ON THE MASS FUNCTION OF YOUNG STAR CLUSTERS. Astrophysical Journal Letters, 2010, 710, L142-L146.	3.0	176
28	DIRECT NUMERICAL SIMULATION OF RADIATION PRESSURE-DRIVEN TURBULENCE AND WINDS IN STAR CLUSTERS AND GALACTIC DISKS. Astrophysical Journal, 2012, 760, 155.	1.6	168
29	WHAT DRIVES THE EXPANSION OF GIANT H II REGIONS?: A STUDY OF STELLAR FEEDBACK IN 30 DORADUS. Astrophysical Journal, 2011, 731, 91.	1.6	167
30	The Global Evolution of Giant Molecular Clouds. I. Model Formulation and Quasiâ€Equilibrium Behavior. Astrophysical Journal, 2006, 653, 361-382.	1.6	166
31	SLUG—STOCHASTICALLY LIGHTING UP GALAXIES. I. METHODS AND VALIDATING TESTS. Astrophysical Journal, 2012, 745, 145.	1.6	159
32	LEGACY EXTRAGALACTIC UV SURVEY (LEGUS) WITH THE <i>HUBBLE SPACE TELESCOPE </i> . I. SURVEY DESCRIPTION. Astronomical Journal, 2015, 149, 51.	1.9	155
33	METALLICITY-DEPENDENT QUENCHING OF STAR FORMATION AT HIGH REDSHIFT IN SMALL GALAXIES. Astrophysical Journal, 2012, 753, 16.	1.6	152
34	THE ATOMIC-TO-MOLECULAR TRANSITION IN GALAXIES. III. A NEW METHOD FOR DETERMINING THE MOLECULAR CONTENT OF PRIMORDIAL AND DUSTY CLOUDS. Astrophysical Journal, 2010, 709, 308-320.	1.6	149
35	The Relationship between Molecular Gas Tracers and Kennicutt chmidt Laws. Astrophysical Journal, 2007, 669, 289-298.	1.6	147
36	Global Models for the Evolution of Embedded, Accreting Protostellar Disks. Astrophysical Journal, 2008, 681, 375-390.	1.6	147

#	Article	IF	CITATIONS
37	THE FRAGMENTATION OF MAGNETIZED, MASSIVE STAR-FORMING CORES WITH RADIATIVE FEEDBACK. Astrophysical Journal, 2013, 766, 97.	1.6	143
38	THE LONG-TERM EVOLUTION OF THE GALACTIC DISK TRACED BY DISSOLVING STAR CLUSTERS. Astrophysical Journal, 2010, 713, 166-179.	1.6	140
39	WHICH PHASE OF THE INTERSTELLAR MEDIUM CORRELATES WITH THE STAR FORMATION RATE?. Astrophysical Journal, 2011, 731, 25.	1.6	139
40	The CO-H2â€,conversion factor in disc galaxies and mergers. Monthly Notices of the Royal Astronomical Society, 2011, 418, 664-679.	1.6	139
41	STOCHASTIC STAR FORMATION AND A (NEARLY) UNIFORM STELLAR INITIAL MASS FUNCTION. Astrophysical Journal Letters, 2011, 741, L26.	3.0	131
42	The atomic-to-molecular transition and its relation to the scaling properties of galaxy discs in the local Universe. Monthly Notices of the Royal Astronomical Society, 2010, 409, 515-530.	1.6	130
43	Is turbulence in the interstellar medium driven by feedback or gravity? An observational test. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1671-1677.	1.6	130
44	RADIATION-HYDRODYNAMIC SIMULATIONS OF MASSIVE STAR FORMATION WITH PROTOSTELLAR OUTFLOWS. Astrophysical Journal, 2011, 740, 107.	1.6	125
45	The star formation law in molecule-poor galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 436, 2747-2762.	1.6	122
46	Equations and Algorithms for Mixedâ€frame Fluxâ€limited Diffusion Radiation Hydrodynamics. Astrophysical Journal, 2007, 667, 626-643.	1.6	121
47	The formation of stars by gravitational collapse rather than competitive accretion. Nature, 2005, 438, 332-334.	13.7	120
48	ON THE RELIABILITY OF STELLAR AGES AND AGE SPREADS INFERRED FROM PRE-MAIN-SEQUENCE EVOLUTIONARY MODELS. Astrophysical Journal, 2011, 738, 140.	1.6	118
49	STAR FORMATION IN ATOMIC GAS. Astrophysical Journal, 2012, 759, 9.	1.6	118
50	How Protostellar Outflows Help Massive Stars Form. Astrophysical Journal, 2005, 618, L33-L36.	1.6	115
51	Numerical simulations of radiatively driven dusty winds. Monthly Notices of the Royal Astronomical Society, 2013, 434, 2329-2346.	1.6	115
52	Balance among gravitational instability, star formation and accretion determines the structure and evolution of disc galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1552-1576.	1.6	112
53	RADIATION-HYDRODYNAMIC SIMULATIONS OF THE FORMATION OF ORION-LIKE STAR CLUSTERS. I. IMPLICATIONS FOR THE ORIGIN OF THE INITIAL MASS FUNCTION. Astrophysical Journal, 2011, 740, 74.	1.6	110
54	Magnetohydrodynamic Evolution of H <scp>ii</scp> Regions in Molecular Clouds: Simulation Methodology, Tests, and Uniform Media. Astrophysical Journal, 2007, 671, 518-535.	1.6	109

#	Article	IF	CITATIONS
55	THE ROLE OF STELLAR FEEDBACK IN THE DYNAMICS OF H II REGIONS. Astrophysical Journal, 2014, 795, 121.	1.6	109
56	Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628 ^{â^—} . Astrophysical Journal, 2017, 841, 131.	1.6	107
57	ON THE DYNAMICS AND EVOLUTION OF GRAVITATIONAL INSTABILITY-DOMINATED DISKS. Astrophysical Journal, 2010, 724, 895-907.	1.6	105
58	A dynamical model for the formation of gas rings and episodic starbursts near galactic centres. Monthly Notices of the Royal Astronomical Society, 2015, 453, 739-757.	1.6	105
59	DWARF GALAXY FORMATION WITH H ₂ -REGULATED STAR FORMATION. Astrophysical Journal, 2012, 749, 36.	1.6	105
60	Star cluster formation in turbulent, magnetized dense clumps with radiative and outflow feedback. Monthly Notices of the Royal Astronomical Society, 2014, 439, 3420-3438.	1.6	103
61	SLUG – stochastically lighting up galaxies – III. A suite of tools for simulated photometry, spectroscopy, and Bayesian inference with stochastic stellar populations. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1447-1467.	1.6	102
62	MOLECULAR HYDROGEN DEFICIENCY IN H I-POOR GALAXIES AND ITS IMPLICATIONS FOR STAR FORMATION. Astrophysical Journal, 2009, 697, 1811-1821.	1.6	101
63	EVOLVING GRAVITATIONALLY UNSTABLE DISKS OVER COSMIC TIME: IMPLICATIONS FOR THICK DISK FORMATION. Astrophysical Journal, 2012, 754, 48.	1.6	101
64	An unstable truth: how massive stars get their mass. Monthly Notices of the Royal Astronomical Society, 2016, 463, 2553-2573.	1.6	100
65	Enhanced momentum feedback from clustered supernovae. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2471-2488.	1.6	99
66	THE GLOBAL EVOLUTION OF GIANT MOLECULAR CLOUDS. II. THE ROLE OF ACCRETION. Astrophysical Journal, 2011, 738, 101.	1.6	98
67	RADIATION FEEDBACK, FRAGMENTATION, AND THE ENVIRONMENTAL DEPENDENCE OF THE INITIAL MASS FUNCTION. Astrophysical Journal, 2010, 713, 1120-1133.	1.6	97
68	A theory for the excitation of CO in star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1411-1428.	1.6	95
69	The Role of Magnetic Fields in Setting the Star Formation Rate and the Initial Mass Function. Frontiers in Astronomy and Space Sciences, 2019, 6, .	1.1	95
70	SLUG – Stochastically Lighting Up Galaxies – II. Quantifying the effects of stochasticity on star formation rate indicators. Monthly Notices of the Royal Astronomical Society, 2014, 444, 3275-3287.	1.6	91
71	Radiation Feedback and Fragmentation in Massive Protostellar Cores. Astrophysical Journal, 2006, 641, L45-L48.	1.6	90
72	Steady outflows in giant clumps of high-z disc galaxies during migration and growth by accretion. Monthly Notices of the Royal Astronomical Society, 2013, 432, 455-467.	1.6	89

#	Article	IF	CITATIONS
73	Survival of star-forming giant clumps in high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2010, 406, 112-120.	1.6	86
74	A dynamical model for gas flows, star formation and nuclear winds in galactic centres. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1213-1233.	1.6	79
75	On the origin of the fundamental metallicity relation and the scatter in galaxy scaling relations. Monthly Notices of the Royal Astronomical Society, 2014, 443, 168-185.	1.6	77
76	ON THE ORIGIN OF STELLAR MASSES. Astrophysical Journal, 2011, 743, 110.	1.6	75
77	Dense Gas, Dynamical Equilibrium Pressure, and Star Formation in Nearby Star-forming Galaxies. Astrophysical Journal, 2018, 858, 90.	1.6	75
78	THERMAL-INSTABILITY-DRIVEN TURBULENT MIXING IN GALACTIC DISKS. I. EFFECTIVE MIXING OF METALS. Astrophysical Journal, 2012, 758, 48.	1.6	74
79	Early turbulent mixing as the origin of chemical homogeneity in open star clusters. Nature, 2014, 513, 523-525.	13.7	73
80	SIMULATED PHOTOEVAPORATIVE MASS LOSS FROM HOT JUPITERS IN 3D. Astrophysical Journal, 2015, 808, 173.	1.6	73
81	WAS THE SUN BORN IN A MASSIVE CLUSTER?. Astrophysical Journal, 2012, 754, 56.	1.6	71
82	Gone with the wind: Where is the missing stellar wind energy from massive star clusters?. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2701-2716.	1.6	70
83	Bondiâ€Hoyle Accretion in a Turbulent Medium. Astrophysical Journal, 2006, 638, 369-381.	1.6	69
84	THE BURSTY STAR FORMATION HISTORIES OF LOW-MASS GALAXIES AT 0.4 < z < 1 REVEALED BY STAR FORMATION RATES MEASURED FROM Hβ AND FUV. Astrophysical Journal, 2016, 833, 37.	1.6	69
85	STELLAR KINEMATICS OF YOUNG CLUSTERS IN TURBULENT HYDRODYNAMIC SIMULATIONS. Astrophysical Journal, 2009, 704, L124-L128.	1.6	66
86	Bondi Accretion in the Presence of Vorticity. Astrophysical Journal, 2005, 618, 757-768.	1.6	65
87	despotic – a new software library to Derive the Energetics and SPectra of Optically Thick Interstellar Clouds. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1662-1680.	1.6	65
88	Pre-supernova feedback mechanisms drive the destruction of molecular clouds in nearby star-forming disc galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 509, 272-288.	1.6	65
89	The Resolved Stellar Populations in the LEGUS Galaxies1. Astrophysical Journal, Supplement Series, 2018, 235, 23.	3.0	63
90	MASS TRANSPORT AND TURBULENCE IN GRAVITATIONALLY UNSTABLE DISK GALAXIES. II. THE EFFECTS OF STAR FORMATION FEEDBACK. Astrophysical Journal, 2016, 827, 28.	1.6	62

#	Article	IF	CITATIONS
91	Sub-Eddington star-forming regions are super-Eddington: momentum-driven outflows from supersonic turbulence. Monthly Notices of the Royal Astronomical Society, 2016, 455, 334-342.	1.6	62
92	Connecting young star clusters to CO molecular gas in NGC 7793 with ALMA–LEGUS. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1016-1027.	1.6	62
93	Molecular Line Emission from Massive Protostellar Disks: Predictions for ALMA and EVLA. Astrophysical Journal, 2007, 665, 478-491.	1.6	61
94	The momentum budget of clustered supernova feedback in a 3D, magnetized medium. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3647-3658.	1.6	60
95	Metallicity fluctuation statistics in the interstellar medium and young stars $\hat{a} \in 1$. Variance and correlation. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2236-2252.	1.6	59
96	The effects of magnetic fields and protostellar feedback on low-mass cluster formation. Monthly Notices of the Royal Astronomical Society, 2018, 476, 771-792.	1.6	58
97	PROTOSTELLAR DISK FORMATION ENABLED BY WEAK, MISALIGNED MAGNETIC FIELDS. Astrophysical Journal Letters, 2013, 767, L11.	3.0	57
98	THE BRIGHTEST YOUNG STAR CLUSTERS IN NGC 5253. Astrophysical Journal, 2015, 811, 75.	1.6	56
99	MASS TRANSPORT AND TURBULENCE IN GRAVITATIONALLY UNSTABLE DISK GALAXIES. I. THE CASE OF PURE SELF-GRAVITY. Astrophysical Journal, 2015, 814, 131.	1.6	55
100	Full-disc 13CO(1–0) mapping across nearby galaxies of the EMPIRE survey and the CO-to-H2 conversion factor. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3909-3933.	1.6	55
101	Massive stars formed in atomic hydrogen reservoirs: H l observations of gamma-ray burst host galaxies. Astronomy and Astrophysics, 2015, 582, A78.	2.1	55
102	RADIATIVE RAYLEIGH-TAYLOR INSTABILITIES. Astrophysical Journal, 2011, 730, 116.	1.6	53
103	Suppression of star formation in dwarf galaxies by photoelectric grain heating feedback. Nature, 2016, 535, 523-525.	13.7	53
104	THE CHEMICAL SIGNATURES OF THE FIRST STAR CLUSTERS IN THE UNIVERSE. Astrophysical Journal, 2010, 721, 582-596.	1.6	52
105	The life cycle of the Central Molecular Zone – I. Inflow, star formation, and winds. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4401-4418.	1.6	52
106	The art of modelling CO, [C <scp>i</scp>], and [C <scp>ii</scp>] in cosmological galaxy formation models. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4906-4932.	1.6	52
107	The necessity of feedback physics in setting the peak of the initial mass function. Monthly Notices of the Royal Astronomical Society, 2016, 458, 673-680.	1.6	50
108	Short-lived radioisotopes in meteorites from Galactic-scale correlated star formation. Monthly Notices of the Royal Astronomical Society, 2018, 480, 4025-4039.	1.6	50

#	Article	IF	CITATIONS
109	AN INITIAL MASS FUNCTION STUDY OF THE DWARF STARBURST GALAXY NGC 4214. Astrophysical Journal, 2013, 767, 51.	1.6	49
110	The importance of magnetic fields for the initial mass function of the first stars. Monthly Notices of the Royal Astronomical Society, 2020, 497, 336-351.	1.6	49
111	Morphology of Hydrodynamic Winds: A Study of Planetary Winds in Stellar Environments. Astrophysical Journal, 2019, 873, 89.	1.6	48
112	Gamma-Ray Bursts and the Cosmic Star Formation Rate. Astrophysical Journal, 1998, 506, L81-L84.	1.6	47
113	Which feedback mechanisms dominate in the high-pressure environment of the central molecular zone?. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4906-4923.	1.6	47
114	Cosmic ray transport in starburst galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2817-2833.	1.6	47
115	Massive Star Formation. , 2014, , .		47
116	Instability of supersonic cold streams feeding galaxies – I. Linear Kelvin–Helmholtz instability with body modes. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3921-3947.	1.6	46
117	A physical model for the [CÂii]–FIR deficit in luminous galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 467, 50-67.	1.6	46
118	Chemistry and radiative shielding in star-forming galactic discs. Monthly Notices of the Royal Astronomical Society, 2017, 465, 885-905.	1.6	44
119	METALLICITY AND THE UNIVERSALITY OF THE INITIAL MASS FUNCTION. Astrophysical Journal, 2011, 735, 49.	1.6	43
120	Hierarchical Star Formation in Turbulent Media: Evidence from Young Star Clusters. Astrophysical Journal, 2017, 842, 25.	1.6	43
121	Optical depth estimates and effective critical densities of dense gas tracers in the inner parts of nearby galaxy discs. Monthly Notices of the Royal Astronomical Society, 2017, 466, 49-62.	1.6	43
122	THE KINEMATICS OF MOLECULAR CLOUD CORES IN THE PRESENCE OF DRIVEN AND DECAYING TURBULENCE: COMPARISONS WITH OBSERVATIONS. Astronomical Journal, 2008, 136, 404-420.	1.9	42
123	TESTING MODELS FOR MOLECULAR GAS FORMATION IN GALAXIES: HYDROSTATIC PRESSURE OR GAS AND DUST SHIELDING?. Astrophysical Journal, 2010, 722, 919-936.	1.6	42
124	DWARF GALAXY FORMATION WITH H ₂ -REGULATED STAR FORMATION. II. GAS-RICH DARK GALAXIES AT REDSHIFT 2.5. Astrophysical Journal, 2013, 776, 34.	1.6	42
125	Star cluster catalogues for the LECUS dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4897-4919.	1.6	42
126	Mixing and transport of metals by gravitational instability-driven turbulence in galactic discs. Monthly Notices of the Royal Astronomical Society, 2015, 449, 2588-2597.	1.6	41

MARK KRUMHOLZ

#	Article	IF	CITATIONS
127	Evolution of Stellar Feedback in H ii Regions. Astrophysical Journal, 2021, 908, 68.	1.6	41
128	What physics determines the peak of the IMF? Insights from the structure of cores in radiation-magnetohydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3272-3283.	1.6	40
129	A fundamental test for stellar feedback recipes in galaxy simulations. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1717-1728.	1.6	40
130	The Role of Outflows, Radiation Pressure, and Magnetic Fields in Massive Star Formation. Astronomical Journal, 2020, 160, 78.	1.9	40
131	STAR CLUSTER PROPERTIES IN TWO LEGUS GALAXIES COMPUTED WITH STOCHASTIC STELLAR POPULATION SYNTHESIS MODELS. Astrophysical Journal, 2015, 812, 147.	1.6	38
132	ON THE ABSENCE OF HIGH METALLICITY-HIGH COLUMN DENSITY DAMPED $Ly\hat{I}\pm$ SYSTEMS: MOLECULE FORMATION IN A TWO-PHASE INTERSTELLAR MEDIUM. Astrophysical Journal, 2009, 701, L12-L15.	1.6	36
133	EVOLUTION OF BLISTER-TYPE H II REGIONS IN A MAGNETIZED MEDIUM. Astrophysical Journal, 2012, 745, 158.	1.6	36
134	¹³ CO/C ¹⁸ O Gradients across the Disks of Nearby Spiral Galaxies. Astrophysical Journal Letters, 2017, 836, L29.	3.0	36
135	The physics of gas phase metallicity gradients in galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5935-5961.	1.6	36
136	CLOSE STELLAR ENCOUNTERS IN YOUNG, SUBSTRUCTURED, DISSOLVING STAR CLUSTERS: STATISTICS AND EFFECTS ON PLANETARY SYSTEMS. Astrophysical Journal, 2013, 769, 150.	1.6	35
137	DWARF GALAXIES WITH IONIZING RADIATION FEEDBACK. I. ESCAPE OF IONIZING PHOTONS. Astrophysical Journal, 2013, 775, 109.	1.6	35
138	Numerical calibration of the HCN–star formation correlation. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1702-1710.	1.6	35
139	The diffuse Î ³ -ray background is dominated by star-forming galaxies. Nature, 2021, 597, 341-344.	13.7	35
140	WHAT SETS THE INITIAL ROTATION RATES OF MASSIVE STARS?. Astrophysical Journal, 2012, 748, 97.	1.6	34
141	Hybrid Adaptive Ray-Moment Method (HARM2): A highly parallel method for radiation hydrodynamics on adaptive grids. Journal of Computational Physics, 2017, 330, 924-942.	1.9	34
142	Isothermal Fragmentation: Is there a low-mass cut-off?. Monthly Notices of the Royal Astronomical Society, 2018, 480, 182-191.	1.6	33
143	How do bound star clusters form?. Monthly Notices of the Royal Astronomical Society, 2020, 494, 624-641.	1.6	33
144	The Formation of Very Massive Stars. Astrophysics and Space Science Library, 2015, , 43-75.	1.0	33

#	Article	IF	CITATIONS
145	Mass Transfer in Close, Rapidly Accreting Protobinaries: An Origin for Massive Twins?. Astrophysical Journal, 2007, 661, 1034-1041.	1.6	32
146	BIG FISH IN SMALL PONDS: MASSIVE STARS IN THE LOW-MASS CLUSTERS OF M83. Astrophysical Journal, 2014, 793, 4.	1.6	31
147	Towards a radially resolved semi-analytic model for the evolution of disc galaxies tuned with machine learning. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3581-3606.	1.6	31
148	When did the initial mass function become bottom-heavy?. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1959-1984.	1.6	30
149	Magnetic field amplification in accretion discs around the first stars: implications for the primordial IMF. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2014-2032.	1.6	29
150	On the physical mechanisms governing the cloud lifecycle in the Central Molecular Zone of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3380-3385.	1.6	28
151	Instability of supersonic cold streams feeding galaxies–II. Non-linear evolution of surface and body modes of Kelvin–Helmholtz instability. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3293-3328.	1.6	28
152	Do Spectroscopic Dense Gas Fractions Track Molecular Cloud Surface Densities?. Astrophysical Journal Letters, 2018, 868, L38.	3.0	27
153	Momentum feedback from marginally resolved H <scp>ii</scp> regions in isolated disc galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3470-3491.	1.6	27
154	Mixing of metals during star cluster formation: statistics and implications for chemical tagging. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5000-5013.	1.6	26
155	Comparing simulated ^{26} Al maps to gamma-ray measurements. Astronomy and Astrophysics, 2019, 632, A73.	2.1	25
156	DWARF GALAXIES WITH IONIZING RADIATION FEEDBACK. II. SPATIALLY RESOLVED STAR FORMATION RELATION. Astrophysical Journal, 2013, 779, 8.	1.6	24
157	Protostellar feedback in turbulent fragmentation: consequences for stellar clustering and multiplicity. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4093-4106.	1.6	24
158	Extinction Maps and Dust-to-gas Ratios in Nearby Galaxies with LEGUS. Astrophysical Journal, 2018, 855, 133.	1.6	24
159	The SAMI galaxy survey: gas velocity dispersions in low-z star-forming galaxies and the drivers of turbulence. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2265-2284.	1.6	24
160	The Single-cloud Star Formation Relation. Astrophysical Journal Letters, 2021, 912, L19.	3.0	24
161	LINE EMISSION FROM RADIATION-PRESSURIZED H II REGIONS. I. INTERNAL STRUCTURE AND LINE RATIOS. Astrophysical Journal, 2013, 769, 11.	1.6	23
162	Cosmic rays across the star-forming galaxy sequence – I. Cosmic ray pressures and calorimetry. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1312-1333.	1.6	23

#	Article	IF	CITATIONS
163	Star Formation. World Scientific Series in Astrophysics, 2017, , .	1.0	23
164	Resolution requirements and resolution problems in simulations of radiative feedback in dusty gas. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3468-3482.	1.6	22
165	An uncertainty principle for star formation $\hat{a} \in$ III. The characteristic emission time-scales of star formation rate tracers. Monthly Notices of the Royal Astronomical Society, 2020, 498, 235-257.	1.6	22
166	On the origin of the mass–metallicity gradient relation in the local Universe. Monthly Notices of the Royal Astronomical Society, 2021, 504, 53-64.	1.6	22
167	Star Cluster Formation and Feedback. , 2014, , .		22
168	LINE EMISSION FROM RADIATION-PRESSURIZED H II REGIONS. II. DYNAMICS AND POPULATION SYNTHESIS. Astrophysical Journal, 2013, 769, 12.	1.6	21
169	Chronostar: a novel Bayesian method for kinematic age determination. I. Derivation and application to the β Pictoris moving group. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	21
170	The global star formation law by supernova feedback. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4753-4778.	1.6	20
171	The density structure of supersonic self-gravitating turbulence. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4335-4351.	1.6	20
172	Converging on the Initial Mass Function of Stars. Journal of Physics: Conference Series, 2017, 837, 012007.	0.3	19
173	Molecular gas masses of gamma-ray burst host galaxies. Astronomy and Astrophysics, 2018, 617, A143.	2.1	19
174	Cosmic rays across the star-forming galaxy sequence – II. Stability limits and the onset of cosmic ray-driven outflows. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2651-2664.	1.6	19
175	Dark Molecular Gas in Simulations of zÂâ^¼ÂO Disk Galaxies. Astrophysical Journal, 2018, 869, 73.	1.6	18
176	The life cycle of the Central Molecular Zone – II. Distribution of atomic and molecular gas tracers. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5273-5289.	1.6	18
177	Numerical Star-Formation Studies— A Status Report. Advanced Science Letters, 2011, 4, 258-285.	0.2	18
178	Models for the formation of massive stars. , 2009, , 288-320.		17
179	Very Massive Stars in the local Universe. Proceedings of the International Astronomical Union, 2012, 10, 51-79.	0.0	17
180	RADIATIVELY EFFICIENT MAGNETIZED BONDI ACCRETION. Astrophysical Journal, 2012, 744, 185.	1.6	17

#	Article	IF	CITATIONS
181	Exploring the IMF of star clusters: a joint SLUG and LEGUS effort. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2464-2480.	1.6	17
182	Radiation pressure limits on the star formation efficiency and surface density of compact stellar systems. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4895-4906.	1.6	17
183	The role of the H2 adiabatic index in the formation of the first stars. Monthly Notices of the Royal Astronomical Society, 2019, 490, 513-526.	1.6	17
184	Quantifying the effects of spatial resolution and noise on galaxy metallicity gradients. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3819-3838.	1.6	16
185	The centres of M83 and the Milky Way: opposite extremes of a common star formation cycle. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4310-4337.	1.6	16
186	Compression of turbulent magnetized gas in giant molecular clouds. Monthly Notices of the Royal Astronomical Society, 2018, 473, 2144-2159.	1.6	15
187	Distribution and kinematics of 26Al in the Galactic disc. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2442-2454.	1.6	15
188	Detection of metallicity correlations in 100 nearby galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5496-5511.	1.6	15
189	The observable properties of cool winds from galaxies, AGN, and star clusters – I. Theoretical framework. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4061-4086.	1.6	14
190	Studying the ISM at â ⁻¹ ⁄410 pc scale in NGC 7793 with MUSE. Astronomy and Astrophysics, 2021, 650, A103.	2.1	14
191	THE SHAPES OF MOLECULAR CLOUD CORES IN SIMULATIONS AND OBSERVATIONS. Astrophysical Journal, 2009, 693, 914-921.	1.6	13
192	The Maximum Flux of Star-Forming Galaxies. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	13
193	Radiation pressure in galactic discs: stability, turbulence, and winds in the single-scattering limit. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4665-4684.	1.6	13
194	Momentum injection by clustered supernovae: testing subgrid feedback prescriptions. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1243-1256.	1.6	13
195	A scaling relation for the molecular cloud lifetime in Milky Way-like galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1678-1698.	1.6	13
196	The major mechanism to drive turbulence in star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5075-5083.	1.6	12
197	The Catalogue for Astrophysical Turbulence Simulations (CATS). Astrophysical Journal, 2020, 905, 14.	1.6	12
198	The evolution of turbulent galactic discs: gravitational instability, feedback, and accretion. Monthly Notices of the Royal Astronomical Society, 2022, 513, 6177-6195.	1.6	12

#	Article	IF	CITATIONS
199	Determining Star Formation Thresholds from Observations. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	11
200	Helium and nitrogen enrichment in massive main-sequence stars: mechanisms and implications for the origin of WNL stars. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3861-3879.	1.6	11
201	Testing the turbulent origin of the stellar initial mass function. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1138-1148.	1.6	11
202	On the origin of nitrogen at low metallicity. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4359-4376.	1.6	11
203	Emission-line Wings Driven by Lyman Continuum in the Green Pea Analog Mrk 71. Astrophysical Journal Letters, 2021, 920, L46.	3.0	11
204	The Volatile Carbon-to-oxygen Ratio as a Tracer for the Formation Locations of Interstellar Comets. Planetary Science Journal, 2022, 3, 150.	1.5	10
205	VADER: A flexible, robust, open-source code for simulating viscous thin accretion disks. Astronomy and Computing, 2015, 11, 1-17.	0.8	9
206	<scp>slug</scp> IV: a novel forward-modelling method to derive the demographics of star clusters. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3550-3566.	1.6	8
207	Synthetic photometry of OB star clusters with stochastically sampled IMFs: analysis of models and <i>HST</i> observations. Monthly Notices of the Royal Astronomical Society, 2021, 509, 522-549.	1.6	8
208	VETTAM: a scheme for radiation hydrodynamics with adaptive mesh refinement using the variable Eddington tensor method. Monthly Notices of the Royal Astronomical Society, 2022, 512, 401-423.	1.6	8
209	ORION2: A magnetohydrodynamics code for star formation. Journal of Open Source Software, 2021, 6, 3771.	2.0	8
210	Radiation pressure in massive star formation. Proceedings of the International Astronomical Union, 2005, 1, 231-236.	0.0	7
211	Formation and evolution of the local interstellar environment: combined constraints from nucleosynthetic and X-ray data. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5532-5540.	1.6	7
212	The role of gas kinematics in setting metallicity gradients at high redshift. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1295-1308.	1.6	7
213	The dependence of the hierarchical distribution of star clusters on galactic environment. Monthly Notices of the Royal Astronomical Society, 2021, 507, 5542-5566.	1.6	7
214	A wind-blown bubble in the Central Molecular Zone cloud G0.253+0.016. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4758-4774.	1.6	7
215	Star Formation in Molecular Clouds. AIP Conference Proceedings, 2011, , .	0.3	6
216	An uncertainty principle for star formation – V. The influence of dust extinction on star formation rate tracer lifetimes and the inferred molecular cloud lifecycle. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5076-5089.	1.6	6

#	Article	IF	CITATIONS
217	Reconstructing three-dimensional densities from two-dimensional observations of molecular gas. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5997-6009.	1.6	5
218	Spin-down of protostars through gravitational torques. Monthly Notices of the Royal Astronomical Society, 2011, , no-no.	1.6	4
219	Dynamics of small grains in transitional discs. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3023-3042.	1.6	4
220	High-precision star formation efficiency measurements in nearby clouds. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	4
221	Theoretical predictions for IMF diagnostics in UV spectroscopy of star clusters. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3091-3104.	1.6	3
222	Understanding biases in measurements of molecular cloud kinematics using line emission. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2440-2455.	1.6	3
223	<scp>quokka</scp> : a code for two-moment AMR radiation hydrodynamics on GPUs. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1430-1449.	1.6	3
224	Theoretical and Observational Evidence for Coriolis Effects in Coronal Magnetic Fields via Direct Current Driven Flaring Events. Astrophysical Journal, 2022, 929, 54.	1.6	3
225	An analytic method to compute star cluster luminosity statistics. Monthly Notices of the Royal Astronomical Society, 2014, 438, 2355-2370.	1.6	2
226	Studying the ISM at â^¼10 pc scale in NGC 7793 with MUSE. Astronomy and Astrophysics, 2022, 663, C2.	2.1	1
227	Turbulence, feedback, and slow star formation. Proceedings of the International Astronomical Union, 2006, 2, 378-383.	0.0	Ο
228	Star Formation with Adaptive Mesh Refinement Radiation Hydrodynamics. Proceedings of the International Astronomical Union, 2010, 6, 187-194.	0.0	0
229	From Gas to Stars: Simulating a Population of GMCs. Proceedings of the International Astronomical Union, 2012, 8, 91-94.	0.0	Ο
230	Star Formation and the Atomic-Molecular Transition. Proceedings of the International Astronomical Union, 2012, 8, 227-234.	0.0	0
231	Inflow of atomic gas fuelling star formation. Proceedings of the International Astronomical Union, 2015, 11, 229-230.	0.0	Ο
232	Short-lived radioisotopes in meteorites from Galactic-scale correlated star formation. Proceedings of the International Astronomical Union, 2018, 14, 83-86.	0.0	0
233	Quantifying stochasticity-driven uncertainties in HÂ <scp>ii</scp> region metallicities. Monthly Notices of the Royal Astronomical Society, 2021, 508, 3290-3303.	1.6	0
234	High-mass star formation by gravitational collapse of massive cores. , 0, , 1-24.		0