Shuo Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9045225/publications.pdf

Version: 2024-02-01

471371 454834 45 975 17 30 citations h-index g-index papers 46 46 46 1130 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Early assessment of chemotherapeutic response in hepatocellular carcinoma based on serum surface-enhanced Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 278, 121314.	2.0	5
2	Prediction of the postoperative prognosis in patients with non-muscle-invasive bladder cancer based on preoperative serum surface-enhanced Raman spectroscopy. Biomedical Optics Express, 2022, 13, 4204.	1.5	4
3	Coding Convolutional Neural Networks as Spectral Transmittance for Intelligent Hyperspectral Remote Sensing in a Snapshot. IEEE Geoscience and Remote Sensing Letters, 2021, 18, 1635-1639.	1.4	3
4	Identifying benign and malignant thyroid nodules based on blood serum surface-enhanced Raman spectroscopy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102328.	1.7	22
5	Detecting urine metabolites of bladder cancer by surface-enhanced Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 247, 119108.	2.0	25
6	Identifying functioning and nonfunctioning adrenal tumors based on blood serum surface-enhanced Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2021, 413, 4289-4299.	1.9	9
7	Predicting prognosis in acute myeloid leukemia patients by surface-enhanced Raman spectroscopy. Nanomedicine, 2021, 16, 1873-1885.	1.7	5
8	Identification and assessment of pulmonary Cryptococcus neoformans infection by blood serum surface-enhanced Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 260, 119978.	2.0	9
9	Preparation of antimonene nanosheets and their thermoelectric nanocomposites. Composites Communications, 2021, 28, 100968.	3.3	7
10	Accelerating Monte Carlo simulation of light propagation in tissue mimicking turbid medium based on generative adversarial networks. Medical Physics, 2021, , .	1.6	4
11	Thermally and electrically conductive multifunctional sensor based on epoxy/graphene composite. Nanotechnology, 2020, 31, 075702.	1.3	64
12	Label-free detection of multiple genitourinary cancers from urine by surface-enhanced Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 240, 118543.	2.0	20
13	Predicting Unnecessary Nodule Biopsies from a Small, Unbalanced, and Pathologically Proven Dataset by Transfer Learning. Journal of Digital Imaging, 2020, 33, 685-696.	1.6	5
14	Tortuosity of Retinal Main and Branching Arterioles, Venules in Patients With Type 2 Diabetes and Diabetic Retinopathy in China. IEEE Access, 2020, 8, 6201-6208.	2.6	5
15	A surface-enhanced Raman scattering-based probe method for detecting chromogranin A in adrenal tumors. Nanomedicine, 2020, 15, 397-407.	1.7	3
16	Programmable hyperspectral microscopy for high-contrast biomedical imaging in a snapshot. Journal of Biomedical Optics, 2020, 25, $1.$	1.4	2
17	A State-of-the-Art Survey for Microorganism Image Segmentation Methods and Future Potential. IEEE Access, 2019, 7, 100243-100269.	2.6	53
18	Assessing the effectiveness of artificial intelligence methods for melanoma: A retrospective review. Journal of the American Academy of Dermatology, 2019, 81, 1176-1180.	0.6	35

#	Article	IF	CITATIONS
19	A Programmable Optical Filter With Arbitrary Transmittance for Fast Spectroscopic Imaging and Spectral Data Post-Processing. IEEE Access, 2019, 7, 119294-119308.	2.6	4
20	High Spectral Resolution Raman Measurements Using Light-Emitting Diode as Excitation Based on Weighted Spectral Reconstruction Method. IEEE Access, 2019, 7, 134828-134837.	2.6	0
21	Weighted spectral reconstruction method for discrimination of bacterial species with low signal-to-noise ratio Raman measurements. RSC Advances, 2019, 9, 9500-9508.	1.7	11
22	Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer using Radiomics Features of DCE-MRI. Scientific Reports, 2019, 9, 2240.	1.6	56
23	Logarithmic Texture Analysis for Early Lung Cancer Screening on Contrast Enhancement CT Images. , 2019, , .		0
24	Low-cost fabrication of a paper-based microfluidic using a folded pattern paper. Analytica Chimica Acta, 2019, 1053, 131-138.	2.6	40
25	Identifying non-muscle-invasive and muscle-invasive bladder cancer based on blood serum surface-enhanced Raman spectroscopy. Biomedical Optics Express, 2019, 10, 3533.	1.5	43
26	Identifying pulmonary Cryptococcus neoformans infection by serum surface-enhanced Raman spectroscopy., 2019,,.		0
27	Serum microRNA-221 as a biomarker for diabetic retinopathy in patients associated with type 2 diabetes. International Journal of Ophthalmology, 2018, 11, 1889-1894.	0.5	29
28	A Fast Fluorescence Background Suppression Method for Raman Spectroscopy Based on Stepwise Spectral Reconstruction. IEEE Access, 2018, 6, 67709-67717.	2.6	13
29	Analysis and classification of kidney stones based on Raman spectroscopy. Biomedical Optics Express, 2018, 9, 4175.	1.5	39
30	Fast wide-field Raman spectroscopic imaging based on multi-channel narrow-band imaging and Wiener estimation. , $2018, , .$		0
31	Epipolar geometry for prism-based single-lens stereovision. Machine Vision and Applications, 2017, 28, 313-326.	1.7	2
32	Spectral diffuse reflectance and autofluorescence imaging can perform early prediction of blood vessel occlusion in skin flaps. Journal of Biophotonics, 2017, 10, 1665-1675.	1.1	9
33	Stepwise method based on Wiener estimation for spectral reconstruction in spectroscopic Raman imaging. Optics Express, 2017, 25, 1005.	1.7	34
34	Fast wide-field Raman spectroscopic imaging based on simultaneous multi-channel image acquisition and Wiener estimation. Optics Letters, 2016, 41, 2783.	1.7	18
35	Early detection and differentiation of venous and arterial occlusion in skin flaps using visible diffuse reflectance spectroscopy and autofluorescence spectroscopy. Biomedical Optics Express, 2016, 7, 570.	1.5	11
36	A Method to Create a Universal Calibration Dataset for Raman Reconstruction Based on Wiener Estimation. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 164-170.	1.9	6

Shuo Chen

#	ARTICLE	IF	CITATIONS
37	Review of Fluorescence Suppression Techniques in Raman Spectroscopy. Applied Spectroscopy Reviews, 2015, 50, 387-406.	3.4	201
38	Optimization of advanced Wiener estimation methods for Raman reconstruction from narrow-band measurements in the presence of fluorescence background. Biomedical Optics Express, 2015, 6, 2633.	1.5	18
39	Recovery of Raman spectra with low signal-to-noise ratio using Wiener estimation. Optics Express, 2014, 22, 12102.	1.7	66
40	Sequential weighted Wiener estimation for extraction of key tissue parameters in color imaging: a phantom study. Journal of Biomedical Optics, 2014, 19, 127001.	1.4	4
41	Early Prediction of Skin Viability Using Visible Diffuse Reflectance Spectroscopy and Autofluorescence Spectroscopy. Plastic and Reconstructive Surgery, 2014, 134, 240e-247e.	0.7	14
42	Fast reconstruction of Raman spectra from narrowâ€band measurements based on Wiener estimation. Journal of Raman Spectroscopy, 2013, 44, 875-881.	1.2	25
43	Modified Wiener estimation of diffuse reflectance spectra from RGB values by the synthesis of new colors for tissue measurements. Journal of Biomedical Optics, 2012, 17, 030501.	1.4	44
44	Software controlling algorithms for the system performance optimization of confocal laser scanning microscope. Biomedical Signal Processing and Control, 2010, 5, 223-228.	3. 5	8
45	MTST: A splitting strategy to reduce the number of filters in programmable hyperspectral imaging for fast multi-target classification. Optics Express, 0, , .	1.7	0