Lorenzo Alamo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9045010/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Myosin Sequestration Regulates Sarcomere Function, Cardiomyocyte Energetics, and Metabolism, Informing the Pathogenesis of Hypertrophic Cardiomyopathy. Circulation, 2020, 141, 828-842.	1.6	181
2	18O labeling on Ser45 but not on Ser35 supports the cooperative phosphorylation mechanism on tarantula thick filament activation. Biochemical and Biophysical Research Communications, 2020, 524, 198-204.	1.0	4
3	The myosin interacting-heads motif present in live tarantula muscle explains tetanic and posttetanic phosphorylation mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11865-11874.	3.3	35
4	Interacting-heads motif has been conserved as a mechanism of myosin II inhibition since before the origin of animals. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1991-E2000.	3.3	70
5	Lessons from a tarantula: new insights into myosin interacting-heads motif evolution and its implications on disease. Biophysical Reviews, 2018, 10, 1465-1477.	1.5	39
6	Lessons from a tarantula: new insights into muscle thick filament and myosin interacting-heads motif structure and function. Biophysical Reviews, 2017, 9, 461-480.	1.5	31
7	Effects of myosin variants on interacting-heads motif explain distinct hypertrophic and dilated cardiomyopathy phenotypes. ELife, 2017, 6, .	2.8	153
8	Conserved Intramolecular Interactions Maintain Myosin Interacting-Heads Motifs Explaining Tarantula Muscle Super-Relaxed State Structural Basis. Journal of Molecular Biology, 2016, 428, 1142-1164.	2.0	82
9	Sequential myosin phosphorylation activates tarantula thick filament via a disorder–order transition. Molecular BioSystems, 2015, 11, 2167-2179.	2.9	15
10	Tarantula myosin free head regulatory light chain phosphorylation stiffens N-terminal extension, releasing it and blocking its docking back. Molecular BioSystems, 2015, 11, 2180-2189.	2.9	19
11	Different Head Environments in Tarantula Thick Filaments Support aÂCooperative Activation Process. Biophysical Journal, 2013, 105, 2114-2122.	0.2	22
12	The myosin interacting-heads motif is present in the relaxed thick filament of the striated muscle of scorpion. Journal of Structural Biology, 2012, 180, 469-478.	1.3	34
13	A Molecular Model of Phosphorylation-Based Activation and Potentiation of Tarantula Muscle Thick Filaments. Journal of Molecular Biology, 2011, 414, 44-61.	2.0	61
14	Three-Dimensional Reconstruction of Tarantula Myosin Filaments Suggests How Phosphorylation May Regulate Myosin Activity. Journal of Molecular Biology, 2008, 384, 780-797.	2.0	132
15	Atomic model of a myosin filament in the relaxed state. Nature, 2005, 436, 1195-1199.	13.7	303