Jean-Michel Bolla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9044645/publications.pdf

Version: 2024-02-01

81 papers

2,957 citations

28 h-index 52 g-index

84 all docs

84 docs citations

times ranked

84

3501 citing authors

#	Article	IF	CITATIONS
1	Geraniol Restores Antibiotic Activities against Multidrug-Resistant Isolates from Gram-Negative Species. Antimicrobial Agents and Chemotherapy, 2009, 53, 2209-2211.	3.2	207
2	Strategies for bypassing the membrane barrier in multidrug resistant Gramâ€negative bacteria. FEBS Letters, 2011, 585, 1682-1690.	2.8	192
3	Mechanisms of fluoroquinolone and macrolide resistance in Campylobacter spp Microbes and Infection, 2006, 8, 1967-1971.	1.9	176
4	Membrane Permeability and Regulation of Drug & Drug Targets, 2008, 9, 750-759.	2.1	157
5	Antibacterial activity of some natural products against bacteria expressing a multidrug-resistant phenotype. International Journal of Antimicrobial Agents, 2011, 37, 156-161.	2.5	134
6	Identification of a ClpC ATPase required for stress tolerance and in vivo survival of Listeria monocytogenes. Molecular Microbiology, 1996, 21, 977-987.	2.5	127
7	(<i>E</i>)-Methylisoeugenol and Elemicin:  Antibacterial Components of <i>Daucus carota</i> L. Essential Oil against <i>Campylobacter jejuni</i> Journal of Agricultural and Food Chemistry, 2007, 55, 7332-7336.	5. 2	120
8	Odilorhabdins, Antibacterial Agents that Cause Miscoding by Binding at a New Ribosomal Site. Molecular Cell, 2018, 70, 83-94.e7.	9.7	96
9	Efflux Pumps Are Involved in the Defense of Gram-Negative Bacteria against the Natural Products Isobavachalcone and Diospyrone. Antimicrobial Agents and Chemotherapy, 2010, 54, 1749-1752.	3.2	95
10	Antibacterial Action of Essential Oils from Corsica. Journal of Essential Oil Research, 2007, 19, 176-182.	2.7	90
11	How Î ² -Lactam Antibiotics Enter Bacteria: A Dialogue with the Porins. PLoS ONE, 2009, 4, e5453.	2.5	83
12	Molecular basis of macrolide resistance in Campylobacter: role of efflux pumps and target mutations. Journal of Antimicrobial Chemotherapy, 2005, 56, 491-497.	3.0	68
13	Conformational analysis of the Campylobacter jejuni porin. Journal of Bacteriology, 1995, 177, 4266-4271.	2.2	63
14	Phytochemical composition of Corsican Teucrium essential oils and antibacterial activity against foodborne or toxi-infectious pathogens. Food Control, 2013, 30, 354-363.	5.5	61
15	A phenylalanine–arginine β-naphthylamide sensitive multidrug efflux pump involved in intrinsic and acquired resistance of Campylobacter to macrolides. International Journal of Antimicrobial Agents, 2003, 22, 237-241.	2.5	60
16	Enhanced Adhesion of Campylobacter jejuni to Abiotic Surfaces Is Mediated by Membrane Proteins in Oxygen-Enriched Conditions. PLoS ONE, 2012, 7, e46402.	2.5	60
17	The assembly of the major outer membrane protein OmpF of Escherichia coli depends on lipid synthesis EMBO Journal, 1988, 7, 3595-3599.	7.8	56
18	MOMP (major outer membrane protein) of Campylobacter jejuni; a versatile pore-forming protein. FEBS Letters, 2000, 469, 93-97.	2.8	53

#	Article	IF	Citations
19	pH Modulation of Efflux Pump Activity of Multi-Drug Resistant Escherichia coli: Protection During Its Passage and Eventual Colonization of the Colon. PLoS ONE, 2009, 4, e6656.	2.5	53
20	New lanthelliformisamine Derivatives as Antibiotic Enhancers against Resistant Gram-Negative Bacteria. Journal of Medicinal Chemistry, 2014, 57, 4263-4272.	6.4	47
21	Long-Term Survival of <i>Campylobacter jejuni</i> at Low Temperatures Is Dependent on Polynucleotide Phosphorylase Activity. Applied and Environmental Microbiology, 2009, 75, 7310-7318.	3.1	44
22	Characterization of ompF domains involved in Escherichia coli K-12 sensitivity to colicins A and N. Journal of Bacteriology, 1990, 172, 3675-3680.	2.2	43
23	MOMP from Campylobacter jejuni Is a Trimer of 18 -Stranded \hat{l}^2 -Barrel Monomers with a Ca 2 + Ion Bound at the Constriction Zone. Journal of Molecular Biology, 2016 , 428 , 4528 - 4543 .	4.2	36
24	Efflux Pumps of Gram-Negative Bacteria, a New Target for New Molecules. Current Topics in Medicinal Chemistry, 2010, 10, 1848-1857.	2.1	35
25	Crucial domains are conserved in Enterobacteriaceae porins. FEMS Microbiology Letters, 1996, 136, 91-97.	1.8	34
26	Polyamino geranic derivatives as new chemosensitizers to combat antibiotic resistant Gram-negative bacteria. Bioorganic and Medicinal Chemistry, 2013, 21, 1174-1179.	3.0	34
27	Purification, characterization and sequence analysis of Omp50,a new porin isolated from Campylobacter jejuni. Biochemical Journal, 2000, 352, 637-643.	3.7	32
28	Antibiotic-resistant Campylobacter: could efflux pump inhibitors control infection?. Journal of Antimicrobial Chemotherapy, 2007, 59, 1230-1236.	3.0	31
29	Antibiotic Uptake through Membrane Channels: Role of <i>Providencia stuartii</i> Carbapenem Resistance. Biochemistry, 2012, 51, 10244-10249.	2.5	30
30	Polyamino-Isoprenic Derivatives Block Intrinsic Resistance of P. aeruginosa to Doxycycline and Chloramphenicol In Vitro. PLoS ONE, 2016, 11, e0154490.	2.5	30
31	Environmental Regulation of Campylobacter jejuni Major Outer Membrane Protein Porin Expression in Escherichia coli Monitored by Using Green Fluorescent Protein. Applied and Environmental Microbiology, 2002, 68, 4209-4215.	3.1	29
32	First evidence of antibacterial and synergistic effects of Thymus riatarum essential oil with conventional antibiotics. Industrial Crops and Products, 2014, 61, 370-376.	5.2	29
33	A unique peptide deformylase platform to rationally design and challenge novel active compounds. Scientific Reports, 2016, 6, 35429.	3.3	28
34	Antibacterial activities of mono-, di- and tri-substituted triphenylamine-based phosphonium ionic liquids. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 926-929.	2.2	28
35	MOMP, a Divergent Porin from Campylobacter: Cloning and Primary Structural Characterization. Biochemical and Biophysical Research Communications, 2001, 280, 380-387.	2.1	27
36	Antibacterial activities of fluorescent nano assembled triphenylamine phosphonium ionic liquids. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3770-3773.	2.2	24

#	Article	IF	Citations
37	Claramines: A New Class Of Broadâ€Spectrum Antimicrobial Agents With Bimodal Activity. ChemMedChem, 2018, 13, 1018-1027.	3.2	23
38	A putative adhesin gene cloned from Campylobacter jejuni. Research in Microbiology, 1998, 149, 723-733.	2.1	21
39	Motuporamine Derivatives as Antimicrobial Agents and Antibiotic Enhancers against Resistant Gramâ€Negative Bacteria. ChemBioChem, 2017, 18, 276-283.	2.6	21
40	The Campylobacter jejuni Porin Trimers Pack into Different Lattice Types when Reconstituted in the Presence of Lipid. FEBS Journal, 1997, 244, 575-579.	0.2	19
41	Use of the omp50 Gene for Identification of Campylobacter Species by PCR. Journal of Clinical Microbiology, 2004, 42, 2301-2305.	3.9	19
42	Providencia stuartii form biofilms and floating communities of cells that display high resistance to environmental insults. PLoS ONE, 2017, 12, e0174213.	2.5	18
43	An iron-dependent mutant ofListeria monocytogenesof attenuated virulence. FEMS Microbiology Letters, 1995, 133, 77-83.	1.8	17
44	Efflux Pump Blockers in Gram-Negative Bacteria: The New Generation of Hydantoin Based-Modulators to Improve Antibiotic Activity. Frontiers in Microbiology, 2016, 7, 622.	3.5	17
45	Precise localization of an overproduced periplasmic protein in Escherichia coli: use of double immunoâ€gold labelling. Biology of the Cell, 1987, 61, 141-147.	2.0	17
46	Functional refolding of the Campylobacter jejuni MOMP (major outer membrane protein) porin by GroEL from the same species. Biochemical Journal, 2004, 378, 851-856.	3.7	16
47	<i>Thymus maroccanus</i> essential oil, a membranotropic compound active on Gram-negative bacteria and resistant isolates. Journal of Applied Microbiology, 2012, 113, 1120-1129.	3.1	16
48	Assembly of the OmpF porin of Escherichia coli B. Immunological and kinetic studies of the integration pathway. FEBS Journal, 1988, 176, 655-660.	0.2	15
49	Expression and purification of native and truncated forms of CadF, an outer membrane protein of Campylobacter. International Journal of Biological Macromolecules, 2006, 39, 135-140.	7. 5	15
50	Polyamino-Isoprenyl Derivatives as Antibiotic Adjuvants and Motility Inhibitors for Bordetella bronchiseptica Porcine Pulmonary Infection Treatment. Frontiers in Microbiology, 2019, 10, 1771.	3.5	15
51	Phosphonium-ammonium-based di-cationic ionic liquids as antibacterial over the ESKAPE group. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127389.	2.2	15
52	New Polyaminoisoprenyl Antibiotics Enhancers against Two Multidrug-Resistant Gram-Negative Bacteria from Enterobacter and Salmonella Species. Journal of Medicinal Chemistry, 2020, 63, 10496-10508.	6.4	14
53	Export and secretion of overproduced OmpA-Î ² -lactamase inEscherichia coli. FEBS Letters, 1987, 224, 213-218.	2.8	13
54	Immunological approach of assembly and topology of OmpF, an outer membrane protein of Escherichia coli. Biochimie, 1990, 72, 169-176.	2.6	13

#	Article	IF	Citations
55	Purification, characterization and sequence analysis of Omp50,a new porin isolated from Campylobacter jejuni. Biochemical Journal, 2000, 352, 637.	3.7	12
56	Inhibitors of Antibiotic Efflux by AcrAB-TolC in Enterobacter aerogenes. Anti-Infective Agents, 2013, 11, 168-178.	0.4	12
57	Porin self-association enables cell-to-cell contact in <i>Providencia stuartii</i> floating communities. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2220-E2228.	7.1	11
58	A genetic engineering approach to study the mode of assembly of the OmpF porin in the envelop of E coli. Biochimie, 1990, 72, 385-395.	2.6	10
59	Antibacterial Mode of Action of the Daucus carota Essential Oil Active Compounds against Campylobacter jejuni and Efflux-Mediated Drug Resistance in Gram-Negative Bacteria. Molecules, 2020, 25, 5448.	3.8	10
60	The Polyaminoisoprenyl Potentiator NV716 Revives Old Disused Antibiotics against Intracellular Forms of Infection by Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	9
61	Prevalence of efflux activity in low-level macrolide-resistant Campylobacter species. Journal of Antimicrobial Chemotherapy, 2006, 59, 327-328.	3.0	8
62	Multiparametric Profiling for Identification of Chemosensitizers against Gram-Negative Bacteria. Frontiers in Microbiology, 2018, 9, 204.	3.5	8
63	Molecular Insights into an Antibiotic Enhancer Action of New Morpholine-Containing 5-Arylideneimidazolones in the Fight against MDR Bacteria. International Journal of Molecular Sciences, 2021, 22, 2062.	4.1	7
64	Crystallization and preliminary crystallographic studies of MOMP (major outer membrane protein) fromCampylobacter jejuni. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 2349-2351.	2.5	6
65	The omp50 gene is transcriptionally controlled by a temperature-dependent mechanism conserved among thermophilic Campylobacter species. Research in Microbiology, 2008, 159, 270-278.	2.1	6
66	Purification of Omp50, a Minor Porin of Campylobacter jejuni., 2003, 228, 131-138.		5
67	The polyamino-isoprenyl potentiator NV716 revives disused antibiotics against Gram-negative bacteria in broth, infected monocytes, or biofilms, by disturbing the barrier effect of their outer membrane. European Journal of Medicinal Chemistry, 2022, 238, 114496.	5.5	5
68	From sequence to structure to function: a case study. Enzyme and Microbial Technology, 2002, 30, 289-294.	3.2	4
69	Peptide translocation across MOMP, the major outer membrane channel from Campylobacter jejuni. Biochemistry and Biophysics Reports, 2017, 11, 79-83.	1.3	4
70	Efficiency of a Tetracycline-Adjuvant Combination Against Multidrug Resistant Pseudomonas aeruginosa Tunisian Clinical Isolates. Antibiotics, 2020, 9, 919.	3.7	4
71	The Research of New Inhibitors of Bacterial Methionine Aminopeptidase by Structure Based Virtual Screening Approach of ZINC DATABASE and In Vitro Validation. Current Computer-Aided Drug Design, 2020, 16, 389-401.	1.2	4
72	Chromosomal His-tagging: An alternative approach to membrane protein purification. Proteomics, 2007, 7, 399-402.	2.2	3

#	Article	IF	CITATIONS
73	Cloning, Expression, Purification, Regulation, and Subcellular Localization of a Mini-protein from Campylobacter jejuni. Current Microbiology, 2016, 72, 511-517.	2.2	2
74	Antibiotic Adjuvants to Rescue Pseudomonas aeruginosa from Tetracycline Antibiotics Resistance. Anti-Infective Agents, 2021, 19, 110-116.	0.4	2
75	Les infections á Campylobacter. Revue Francophone Des Laboratoires, 2008, 2008, 27-35.	0.0	1
76	Enhancing antibiotic activity to combat resistant Gram-negative bacteria: what's next?. Future Medicinal Chemistry, 2014, 6, 1849-1851.	2.3	1
77	Tolerance engineering in Deinococcus geothermalis by heterologous efflux pumps. Scientific Reports, 2021, 11, 4280.	3.3	1
78	Nanoarchitectonics of Electrically Activable Phosphonium Self-Assembled Monolayers to Efficiently Kill and Tackle Bacterial Infections on Demand. International Journal of Molecular Sciences, 2022, 23, 2183.	4.1	1
79	Relationships Between Resistance and Virulence in Burkholderia pseudomallei. Current Tropical Medicine Reports, 2017, 4, 127-135.	3.7	0
80	Efflux Pumps of Gram-Negative Bacteria, a New Target for New Molecules. Current Topics in Medicinal Chemistry, 2010, 999, 1-10.	2.1	0
81	Les pompes d'efflux, mécanisme de résistance bactérien. Revue Francophone Des Laboratoires, 2020, 2020, 38-49.	0.0	0