Ryan S Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9044458/publications.pdf Version: 2024-02-01

RVAN S MILLED

#	Article	IF	CITATIONS
1	Risk Analysis for Human-Mediated Movement of Pests and Pathogens. Health Information Systems and the Advancement of Medical Practice in Developing Countries, 2022, , 54-75.	0.1	0
2	Seasonal variation in space use and territoriality in a large mammal (Sus scrofa). Scientific Reports, 2022, 12, 4023.	1.6	4
3	A model for leveraging animal movement to understand spatioâ€ŧemporal disease dynamics. Ecology Letters, 2022, 25, 1290-1304.	3.0	16
4	Adaptive riskâ€based targeted surveillance for foreign animal diseases at the wildlifeâ€livestock interface. Transboundary and Emerging Diseases, 2022, 69, .	1.3	6
5	Transmission of antibiotic resistance at the wildlife-livestock interface. Communications Biology, 2022, 5, .	2.0	17
6	Risks of introduction and economic consequences associated with African swine fever, classical swine fever and footâ€andâ€mouth disease: A review of the literature. Transboundary and Emerging Diseases, 2021, 68, 1910-1965.	1.3	37
7	Effects of social structure and management on risk of disease establishment in wild pigs. Journal of Animal Ecology, 2021, 90, 820-833.	1.3	21
8	Continentalâ€scale dynamics of avian influenza in U.S. waterfowl are driven by demography, migration, and temperature. Ecological Applications, 2021, 31, e2245.	1.8	11
9	Characteristics and Perspectives of Disease at the Wildlife-Livestock Interface in North America. Wildlife Research Monographs, 2021, , 245-269.	0.4	2
10	Assessing intrastate shipments from interstate data and expert opinion. Royal Society Open Science, 2021, 8, 192042.	1.1	4
11	A framework for surveillance of emerging pathogens at the human-animal interface: Pigs and coronaviruses as a case study. Preventive Veterinary Medicine, 2021, 188, 105281.	0.7	8
12	Spatial variation in direct and indirect contact rates at the wildlife-livestock interface for informing disease management. Preventive Veterinary Medicine, 2021, 194, 105423.	0.7	13
13	Predicting functional responses in agroâ€ecosystems from animal movement data to improve management of invasive pests. Ecological Applications, 2020, 30, e02015.	1.8	14
14	Loci Associated With Antibody Response in Feral Swine (Sus scrofa) Infected With Brucella suis. Frontiers in Veterinary Science, 2020, 7, 554674.	0.9	8
15	Improving the accessibility and transferability of machine learning algorithms for identification of animals in camera trap images: MLWIC2. Ecology and Evolution, 2020, 10, 10374-10383.	0.8	33
16	Effects of regional differences and demography in modelling foot-and-mouth disease in cattle at the national scale. Interface Focus, 2020, 10, 20190054.	1.5	10
17	Optimal spatial prioritization of control resources for elimination of invasive species under demographic uncertainty. Ecological Applications, 2020, 30, e02126.	1.8	14
18	A Rapid Population Assessment Method for Wild Pigs Using Baited Cameras at 3 Study Sites. Wildlife Society Bulletin, 2020, 44, 372-382.	1.6	6

RYAN S MILLER

#	Article	IF	CITATIONS
19	Realistic assumptions about spatial locations and clustering of premises matter for models of foot-and-mouth disease spread in the United States. PLoS Computational Biology, 2020, 16, e1007641.	1.5	3
20	Mixed ancestry from wild and domestic lineages contributes to the rapid expansion of invasive feral swine. Molecular Ecology, 2020, 29, 1103-1119.	2.0	31
21	Epidemic growth rates and host movement patterns shape management performance for pathogen spillover at the wildlife–livestock interface. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180343.	1.8	10
22	Detection error influences both temporal seroprevalence predictions and risk factors associations in wildlife disease models. Ecology and Evolution, 2019, 9, 10404-10414.	0.8	8
23	Estimating and exploring the proportions of inter- and intrastate cattle shipments in the United States. Preventive Veterinary Medicine, 2019, 162, 56-66.	0.7	5
24	BOARD INVITED REVIEW: Prospects for improving management of animal disease introductions using disease-dynamic models. Journal of Animal Science, 2019, 97, 2291-2307.	0.2	17
25	Predation and disease-related economic impacts of wild pigs on livestock producers in 13 states. Crop Protection, 2019, 121, 121-126.	1.0	18
26	Risk factors and productivity losses associated with Mycoplasma ovipneumoniae infection in United States domestic sheep operations. Preventive Veterinary Medicine, 2019, 168, 30-38.	0.7	27
27	Accounting for heterogeneous invasion rates reveals management impacts on the spatial expansion of an invasive species. Ecosphere, 2019, 10, e02657.	1.0	18
28	Spatio-temporal patterns and characteristics of swine shipments in the U.S. based on Interstate Certificates of Veterinary Inspection. Scientific Reports, 2019, 9, 3915.	1.6	7
29	Historical, current, and potential population size estimates of invasive wild pigs (Sus scrofa) in the United States. Biological Invasions, 2019, 21, 2373-2384.	1.2	82
30	Machine learning to classify animal species in camera trap images: Applications in ecology. Methods in Ecology and Evolution, 2019, 10, 585-590.	2.2	262
31	Predicting the initial spread of novel Asian origin influenza A viruses in the continental USA by wild waterfowl. Transboundary and Emerging Diseases, 2019, 66, 705-714.	1.3	6
32	A globally-distributed alien invasive species poses risks to United States imperiled species. Scientific Reports, 2018, 8, 5331.	1.6	36
33	Model-guided suggestions for targeted surveillance based on cattle shipments in the U.S Preventive Veterinary Medicine, 2018, 150, 52-59.	0.7	11
34	Abiotic and biotic influences on home-range size of wild pigs (Sus scrofa). Journal of Mammalogy, 2018, 99, 97-107.	0.6	25
35	Determinants of invasive species policy: Print media and agriculture determine U.S. invasive wild pig policy. Ecosphere, 2018, 9, e02379.	1.0	17
36	Propagule size and structure, life history, and environmental conditions affect establishment success of an invasive species. Scientific Reports, 2018, 8, 10313.	1.6	26

RYAN S MILLER

#	Article	IF	CITATIONS
37	Wild pigs breach farm fence through harvest time in southern San Joaquin Valley. California Agriculture, 2018, 72, 120-126.	0.5	3
38	Inferring infection hazard in wildlife populations by linking data across individual and population scales. Ecology Letters, 2017, 20, 275-292.	3.0	50
39	Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Scientific Reports, 2017, 7, 44152.	1.6	156
40	Cross-species transmission potential between wild pigs, livestock, poultry, wildlife, and humans: implications for disease risk management in North America. Scientific Reports, 2017, 7, 7821.	1.6	118
41	Anthropogenic factors predict movement of an invasive species. Ecosphere, 2017, 8, e01844.	1.0	59
42	LIMITED ANTIBODY EVIDENCE OF EXPOSURE TO <i>MYCOBACTERIUM BOVIS</i> IN FERAL SWINE (<i>SUS) TJ E</i>	ГQq0,00r	gBJ /Overlock
43	"One Health―or Three? Publication Silos Among the One Health Disciplines. PLoS Biology, 2016, 14, e1002448.	2.6	84
44	Inferring invasive species abundance using removal data from management actions. Ecological Applications, 2016, 26, 2339-2346.	1.8	36
45	Identification of migratory bird flyways in North America using community detection on biological networks. Ecological Applications, 2016, 26, 740-751.	1.8	27
46	Mapping U.S. cattle shipment networks: Spatial and temporal patterns of trade communities from 2009 to 2011. Preventive Veterinary Medicine, 2016, 134, 82-91.	0.7	24
47	Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific Flyway of the United States. Scientific Reports, 2016, 6, 28980.	1.6	70
48	Potential Intercontinental Movement of Influenza A(H7N9) Virus into North America by Wild Birds: Application of a Rapid Assessment Framework. Transboundary and Emerging Diseases, 2015, 62, 650-668.	1.3	11
49	Modeling and Mapping the Probability of Occurrence of Invasive Wild Pigs across the Contiguous United States. PLoS ONE, 2015, 10, e0133771.	1.1	93
50	Simulating the Distribution of Individual Livestock Farms and Their Populations in the United States: An Example Using Domestic Swine (Sus scrofa domesticus) Farms. PLoS ONE, 2015, 10, e0140338.	1.1	34
51	The Impact of Movements and Animal Density on Continental Scale Cattle Disease Outbreaks in the United States. PLoS ONE, 2014, 9, e91724.	1.1	61
52	Characteristics of white-tailed deer visits to cattle farms: implications for disease transmission at the wildlife–livestock interface. European Journal of Wildlife Research, 2014, 60, 161-170.	0.7	29
53	Using quantitative disease dynamics as a tool for guiding response to avian influenza in poultry in the United States of America. Preventive Veterinary Medicine, 2014, 113, 376-397.	0.7	19
54	Sources of bovine tuberculosis in the United States. Infection, Genetics and Evolution, 2014, 28, 137-143.	1.0	26

RYAN S MILLER

#	Article	IF	CITATIONS
55	Diseases at the livestock–wildlife interface: Status, challenges, and opportunities in the United States. Preventive Veterinary Medicine, 2013, 110, 119-132.	0.7	166
56	A national-scale picture of U.S. cattle movements obtained from Interstate Certificate of Veterinary Inspection data. Preventive Veterinary Medicine, 2013, 112, 318-329.	0.7	28
57	Assessment of paper interstate certificates of veterinary inspection used to support disease tracing in cattle. Journal of the American Veterinary Medical Association, 2013, 243, 555-560.	0.2	11
58	<i>Mycobacterium bovis</i> (bovine tuberculosis) infection in North American wildlife: current status and opportunities for mitigation of risks of further infection in wildlife populations. Epidemiology and Infection, 2013, 141, 1357-1370.	1.0	88
59	A Bayesian Approach for Modeling Cattle Movements in the United States: Scaling up a Partially Observed Network. PLoS ONE, 2013, 8, e53432.	1.1	41
60	Epidemiologic Characterization of Colorado Backyard Bird Flocks. Avian Diseases, 2012, 56, 263-271.	0.4	19
61	Environmental and Demographic Determinants of Avian Influenza Viruses in Waterfowl across the Contiguous United States. PLoS ONE, 2012, 7, e32729.	1.1	36
62	Human–Bird Interactions in the United States Upland Gamebird Industry and the Potential for Zoonotic Disease Transmission. Vector-Borne and Zoonotic Diseases, 2011, 11, 1115-1123.	0.6	10
63	Recognition of the threat ofEhrlichia ruminantiuminfection in domestic and wild ruminants in the continental United States. Journal of the American Veterinary Medical Association, 2010, 237, 520-530.	0.2	18
64	One Health approach to identify research needs in bovine and human babesioses: workshop report. Parasites and Vectors, 2010, 3, 36.	1.0	61
65	Linkage of the California Pesticide Use Reporting Database with Spatial Land Use Data for Exposure Assessment. Environmental Health Perspectives, 2007, 115, 684-689.	2.8	39
66	Serologic Evidence of Widespread Everglades Virus Activity in Dogs, Florida. Emerging Infectious Diseases, 2006, 12, 1873-1879.	2.0	24
67	Identifying Populations Potentially Exposed to Agricultural Pesticides Using Remote Sensing and a Geographic Information System. Environmental Health Perspectives, 2000, 108, 5.	2.8	49