Cristiane Pendeza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9044321/publications.pdf

Version: 2024-02-01

2258059 1720034 14 48 3 7 citations h-index g-index papers 14 14 14 37 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Energy-efficient QoS-based OCDMA networks aided by nonlinear programming methods. AEU - International Journal of Electronics and Communications, 2019, 98, 144-155.	2.9	17
2	Augmented Lagrangian combined to evolutionary heuristic for energy efficiency in OCDMA networks. Optical Switching and Networking, 2020, 36, 100542.	2.0	9
3	Spectral and energy efficiency tradeoff in optical code division multiple access networks. Transactions on Emerging Telecommunications Technologies, 2021, 32, .	3.9	4
4	Non-linear biobjective EE-SE optimization for NOMA-MIMO systems under user-rate fairness and variable number of users per cluster. AEU - International Journal of Electronics and Communications, 2021, 138, 153870.	2.9	4
5	Energy and spectral efficiency trade-off in OCDMA-PON assisted by non-linear programming methods. Computer Networks, 2021, 189, 107920.	5.1	3
6	Hopfield learningâ€based and nonâ€linear programming methods for resource allocation in OCDMA networks. IET Communications, 2020, 14, 1925-1936.	2.2	3
7	Lotka-Volterra distributed power control model for OCDMA systems. AEU - International Journal of Electronics and Communications, 2021, 135, 153722.	2.9	2
8	Halton-Chaos and ALPSO power allocation methods for passive optical CDMA networks. AEU - International Journal of Electronics and Communications, 2021, 139, 153911.	2.9	2
9	SQUARE OF THE ERROR OCTONIONIC THEOREM AND HYPERCOMPLEX FOURIER SERIES. TeMa, 2013, 14, 483.	0.1	2
10	Multiple Solutions for a Sixth Order Boundary Value Problem. Trends in Computational and Applied Mathematics, 2021, 22, 1-12.	0.2	1
11	Multiple solutions for a fourth order equation with nonlinear boundary conditions: theoretical and numerical aspects. Differential Equations and Applications, 2019, , 335-348.	0.4	1
12	Multiple solutions to a third-order three-point nonhomogeneous boundary value problem aided by nonlinear programming methods. Differential Equations and Applications, 2021, , 35-49.	0.4	0
13	ALTERNATIVE TO THE HYPERCOMPLEX FOURIER TRANSFORM DEFINITION. International Journal of Applied Mathematics, 2016, 29, .	0.4	0
14	CONVOLUTION THEOREM AND AN ALTERNATIVE TO THE OCTONIONIC FOURIER TRANSFORM DEFINITION. International Journal of Applied Mathematics, 2018, 31, .	0.4	0