Lina Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9043905/publications.pdf

Version: 2024-02-01

510	40,011	104 h-index	166
papers	citations		g-index
514	514	514	27742
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers, 2011, 84, 40-53.	5.1	872
2	Rapid Dissolution of Cellulose in LiOH/Urea and NaOH/Urea Aqueous Solutions. Macromolecular Bioscience, 2005, 5, 539-548.	2.1	844
3	Recent advances in regenerated cellulose materials. Progress in Polymer Science, 2016, 53, 169-206.	11.8	775
4	Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. European Polymer Journal, 2010, 46, 92-100.	2.6	668
5	A Hierarchical N/Sâ€Codoped Carbon Anode Fabricated Facilely from Cellulose/Polyaniline Microspheres for Highâ€Performance Sodiumâ€Ion Batteries. Advanced Energy Materials, 2016, 6, 1501929.	10.2	460
6	Unique Gelation Behavior of Cellulose in NaOH/Urea Aqueous Solution. Biomacromolecules, 2006, 7, 183-189.	2.6	419
7	Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Materials, 2017, 8, 161-168.	9.5	408
8	Highâ€Strength and Highâ€Toughness Doubleâ€Crossâ€Linked Cellulose Hydrogels: A New Strategy Using Sequential Chemical and Physical Crossâ€Linking. Advanced Functional Materials, 2016, 26, 6279-6287.	7.8	400
9	Dynamic Self-Assembly Induced Rapid Dissolution of Cellulose at Low Temperatures. Macromolecules, 2008, 41, 9345-9351.	2.2	368
10	On-Demand Dissolvable Self-Healing Hydrogel Based on Carboxymethyl Chitosan and Cellulose Nanocrystal for Deep Partial Thickness Burn Wound Healing. ACS Applied Materials & Diterfaces, 2018, 10, 41076-41088.	4.0	351
11	Advances in lentinan: Isolation, structure, chain conformation and bioactivities. Food Hydrocolloids, 2011, 25, 196-206.	5.6	350
12	Morphology and Properties of Soy Protein Isolate Thermoplastics Reinforced with Chitin Whiskers. Biomacromolecules, 2004, 5, 1046-1051.	2.6	333
13	Cellulose Aerogels from Aqueous Alkali Hydroxide–Urea Solution. ChemSusChem, 2008, 1, 149-154.	3.6	327
14	Highly Efficient Selfâ€Healable and Dual Responsive Celluloseâ€Based Hydrogels for Controlled Release and 3D Cell Culture. Advanced Functional Materials, 2017, 27, 1703174.	7.8	325
15	Cellulose–Silica Nanocomposite Aerogels by Inâ€Situ Formation of Silica in Cellulose Gel. Angewandte Chemie - International Edition, 2012, 51, 2076-2079.	7.2	314
16	Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels. Journal of Hazardous Materials, 2012, 209-210, 218-225.	6.5	301
17	Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy, 2016, 27, 482-491.	8.2	299
18	High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon. Journal of Hazardous Materials, 2009, 171, 340-347.	6.5	293

#	Article	IF	CITATIONS
19	Cellulose/chitin beads for adsorption of heavy metals in aqueous solution. Water Research, 2004, 38, 2643-2650.	5.3	285
20	Recent advances in chitin based materials constructed via physical methods. Progress in Polymer Science, 2018, 82, 1-33.	11.8	276
21	Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1521-1529.	2.4	274
22	Ultraâ€Stretchable and Forceâ€Sensitive Hydrogels Reinforced with Chitosan Microspheres Embedded in Polymer Networks. Advanced Materials, 2016, 28, 8037-8044.	11.1	274
23	Correlation between antitumor activity, molecular weight, and conformation of lentinan. Carbohydrate Research, 2005, 340, 1515-1521.	1.1	273
24	Flexible Electronics Based on Micro/Nanostructured Paper. Advanced Materials, 2018, 30, e1801588.	11.1	249
25	High Strength Chitosan Hydrogels with Biocompatibility via New Avenue Based on Constructing Nanofibrous Architecture. Macromolecules, 2015, 48, 2706-2714.	2.2	245
26	Homogeneous Quaternization of Cellulose in NaOH/Urea Aqueous Solutions as Gene Carriers. Biomacromolecules, 2008, 9, 2259-2264.	2.6	244
27	Recent Progress in Highâ€Strength and Robust Regenerated Cellulose Materials. Advanced Materials, 2021, 33, e2000682.	11.1	244
28	Construction of Cellulose Based ZnO Nanocomposite Films with Antibacterial Properties through One-Step Coagulation. ACS Applied Materials & Samp; Interfaces, 2015, 7, 2597-2606.	4.0	243
29	Mechanisms of lead biosorption on cellulose/chitin beads. Water Research, 2005, 39, 3755-3762.	5.3	242
30	Green Fabrication of Amphiphilic Quaternized βâ€Chitin Derivatives with Excellent Biocompatibility and Antibacterial Activities for Wound Healing. Advanced Materials, 2018, 30, e1801100.	11.1	242
31	Highâ€Flexibility, Highâ€Toughness Doubleâ€Crossâ€Linked Chitin Hydrogels by Sequential Chemical and Physical Crossâ€Linkings. Advanced Materials, 2016, 28, 5844-5849.	11.1	240
32	Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydrate Polymers, 2010, 82, 122-127.	5.1	239
33	Swelling Behaviors of pH- and Salt-Responsive Cellulose-Based Hydrogels. Macromolecules, 2011, 44, 1642-1648.	2.2	237
34	Properties of Films Composed of Cellulose Nanowhiskers and a Cellulose Matrix Regenerated from Alkali/Urea Solution. Biomacromolecules, 2009, 10, 1597-1602.	2.6	236
35	Solubility of Cellulose in NaOH/Urea Aqueous Solution. Polymer Journal, 2000, 32, 866-870.	1.3	233
36	Transparent Cellulose Films with High Gas Barrier Properties Fabricated from Aqueous Alkali/Urea Solutions. Biomacromolecules, 2011, 12, 2766-2771.	2.6	223

#	Article	IF	Citations
37	TiO ₂ Immobilized in Cellulose Matrix for Photocatalytic Degradation of Phenol under Weak UV Light Irradiation. Journal of Physical Chemistry C, 2010, 114, 7806-7811.	1.5	222
38	Hydrophobic Modification on Surface of Chitin Sponges for Highly Effective Separation of Oil. ACS Applied Materials & Samp; Interfaces, 2014, 6, 19933-19942.	4.0	219
39	Effects of Cellulose Whiskers on Properties of Soy Protein Thermoplastics. Macromolecular Bioscience, 2006, 6, 524-531.	2.1	218
40	Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. ACS Applied Materials & Samp; Interfaces, 2012, 4, 2897-2902.	4.0	218
41	Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chemistry, 2009, 11, 177-184.	4.6	217
42	Interaction and Properties of Highly Exfoliated Soy Protein/Montmorillonite Nanocomposites. Biomacromolecules, 2006, 7, 1700-1706.	2.6	213
43	Effects of Crosslinking Methods on Structure and Properties of Cellulose/PVA Hydrogels. Macromolecular Chemistry and Physics, 2008, 209, 1266-1273.	1.1	206
44	In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery. Journal of Materials Chemistry, 2009, 19, 3538.	6.7	204
45	Dilute solution properties of cellulose in LiOH/urea aqueous system. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 3093-3101.	2.4	201
46	An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: Magnetic chitosan/cellulose microspheres. Bioresource Technology, 2015, 194, 403-406.	4.8	201
47	Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose, 2008, 15, 779-787.	2.4	200
48	Structure and Properties of Regenerated Cellulose Films Prepared from Cotton Linters in NaOH/Urea Aqueous Solution. Industrial & Engineering Chemistry Research, 2001, 40, 5923-5928.	1.8	199
49	Facile fabrication of superhydrophilic membranes consisted of fibrous tunicate cellulose nanocrystals for highly efficient oil/water separation. Journal of Membrane Science, 2017, 525, 1-8.	4.1	199
50	Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility. Journal of Materials Chemistry, 2011, 21, 3865.	6.7	192
51	Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose, 2014, 21, 1183-1192.	2.4	189
52	Novel Fibers Prepared from Cellulose in NaOH/Urea Aqueous Solution. Macromolecular Rapid Communications, 2004, 25, 1558-1562.	2.0	188
53	In Situ Synthesis of Robust Conductive Cellulose/Polypyrrole Composite Aerogels and Their Potential Application in Nerve Regeneration. Angewandte Chemie - International Edition, 2014, 53, 5380-5384.	7.2	186
54	Physicochemical properties and antitumor activities of water-soluble native and sulfated hyperbranched mushroom polysaccharides. Carbohydrate Research, 2006, 341, 2261-2269.	1,1	176

#	Article	IF	CITATIONS
55	Highly Biocompatible Nanofibrous Microspheres Selfâ€Assembled from Chitin in NaOH/Urea Aqueous Solution as Cell Carriers. Angewandte Chemie - International Edition, 2015, 54, 5152-5156.	7.2	174
56	Ultrahigh Tough, Super Clear, and Highly Anisotropic Nanofiber-Structured Regenerated Cellulose Films. ACS Nano, 2019, 13, 4843-4853.	7.3	174
57	Hydrogen-Bond-Induced Inclusion Complex in Aqueous Cellulose/LiOH/Urea Solution at Low Temperature. ChemPhysChem, 2007, 8, 1572-1579.	1.0	172
58	Hydrogels Prepared from Unsubstituted Cellulose in NaOH/Urea Aqueous Solution. Macromolecular Bioscience, 2007, 7, 804-809.	2.1	168
59	Intermolecular Interaction and the Extended Wormlike Chain Conformation of Chitin in NaOH/Urea Aqueous Solution. Biomacromolecules, 2015, 16, 1410-1417.	2.6	164
60	Facile preparation of robust and biocompatible chitin aerogels. Journal of Materials Chemistry, 2012, 22, 5801.	6.7	163
61	Fabrication and characterization of novel macroporous cellulose–alginate hydrogels. Polymer, 2009, 50, 5467-5473.	1.8	154
62	Quaternized Chitosan/Poly(acrylic acid) Polyelectrolyte Complex Hydrogels with Tough, Self-Recovery, and Tunable Mechanical Properties. Macromolecules, 2016, 49, 1049-1059.	2.2	153
63	Correlation of structure to antitumor activities of five derivatives of a \hat{l}^2 -glucan from Poria cocos sclerotium. Carbohydrate Research, 2004, 339, 2567-2574.	1.1	147
64	Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. Journal of Materials Chemistry, 2009, 19, 7771.	6.7	146
65	High strength films with gas-barrier fabricated from chitin solution dissolved at low temperature. Journal of Materials Chemistry A, 2013, 1, 1867-1874.	5.2	144
66	Bilayer hydrogel actuators with tight interfacial adhesion fully constructed from natural polysaccharides. Soft Matter, 2017, 13, 345-354.	1.2	144
67	CdS/Regenerated Cellulose Nanocomposite Films for Highly Efficient Photocatalytic H ₂ Production under Visible Light Irradiation. Journal of Physical Chemistry C, 2009, 113, 16021-16026.	1.5	143
68	Transparent, Antifreezing, Ionic Conductive Cellulose Hydrogel with Stable Sensitivity at Subzero Temperature. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41710-41716.	4.0	141
69	Highly stretchable, transparent cellulose/PVA composite hydrogel for multiple sensing and triboelectric nanogenerators. Journal of Materials Chemistry A, 2020, 8, 13935-13941.	5.2	140
70	A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure. Journal of Materials Chemistry A, 2013, 1, 6678.	5.2	138
71	Strong and Rapidly Selfâ€Healing Hydrogels: Potential Hemostatic Materials. Advanced Healthcare Materials, 2016, 5, 2813-2822.	3.9	138
72	Robust Anisotropic Cellulose Hydrogels Fabricated via Strong Self-aggregation Forces for Cardiomyocytes Unidirectional Growth. Chemistry of Materials, 2018, 30, 5175-5183.	3.2	137

#	Article	IF	CITATIONS
73	Recent Advances in Chain Conformation and Bioactivities of Triple-Helix Polysaccharides. Biomacromolecules, 2020, 21, 1653-1677.	2.6	137
74	Chain conformation and anti-tumor activities of phosphorylated (1â†'3)-β-d-glucan from Poria cocos. Carbohydrate Polymers, 2009, 78, 581-587.	5.1	135
75	Noncompressible Hemostasis and Bone Regeneration Induced by an Absorbable Bioadhesive Selfâ€Healing Hydrogel. Advanced Functional Materials, 2021, 31, 2009189.	7.8	133
76	Effects of molecular structure on antitumor activities of (1â†'3)-β-d-glucans from different Lentinus Edodes. Carbohydrate Polymers, 2006, 63, 97-104.	5.1	128
77	Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution. Journal of Membrane Science, 2006, 279, 246-255.	4.1	128
78	Chemical components and molecular mass of six polysaccharides isolated from the sclerotium of Poria cocos. Carbohydrate Research, 2004, 339, 327-334.	1.1	127
79	Fiberlike Fe ₂ O ₃ Macroporous Nanomaterials Fabricated by Calcinating Regenerate Cellulose Composite Fibers. Chemistry of Materials, 2008, 20, 3623-3628.	3.2	127
80	Construction of selenium nanoparticles \hat{l}^2 -glucan composites for enhancement of the antitumor activity. Carbohydrate Polymers, 2015, 117, 434-442.	5.1	127
81	Creation of Highly Stable Selenium Nanoparticles Capped with Hyperbranched Polysaccharide in Water. Langmuir, 2010, 26, 17617-17623.	1.6	126
82	Dual Physical Crosslinking Strategy to Construct Moldable Hydrogels with Ultrahigh Strength and Toughness. Advanced Functional Materials, 2018, 28, 1800739.	7.8	125
83	Chain Conformation of Water-Insoluble Hyperbranched Polysaccharide from Fungus. Biomacromolecules, 2007, 8, 2321-2328.	2.6	123
84	Structure Study of Cellulose Fibers Wet-Spun from Environmentally Friendly NaOH/Urea Aqueous Solutions. Biomacromolecules, 2007, 8, 1918-1926.	2.6	121
85	Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. Carbohydrate Polymers, 2013, 91, 7-13.	5.1	121
86	Extremely Strong and Transparent Chitin Films: A Highâ€Efficiency, Energyâ€Saving, and "Green―Route Using an Aqueous KOH/Urea Solution. Advanced Functional Materials, 2017, 27, 1701100.	7.8	121
87	Structure, molecular size and antitumor activities of polysaccharides from Poria cocos mycelia produced in fermenter. Carbohydrate Polymers, 2007, 70, 324-333.	5.1	120
88	Ag–Fe ₃ O ₄ nanocomposites@chitin microspheres constructed by in situ one-pot synthesis for rapid hydrogenation catalysis. Green Chemistry, 2014, 16, 2835-2845.	4.6	120
89	Structure and antitumor activities of the water-soluble polysaccharides from Ganoderma tsugae mycelium. Carbohydrate Polymers, 2005, 59, 385-392.	5.1	118
90	Branching Structure and Chain Conformation of Water-Soluble Glucan Extracted from <i>Auricularia auricula-judae</i> . Journal of Agricultural and Food Chemistry, 2012, 60, 3498-3506.	2.4	118

#	Article	IF	CITATIONS
91	Micro-Nanostructured Polyaniline Assembled in Cellulose Matrix via Interfacial Polymerization for Applications in Nerve Regeneration. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17090-17097.	4.0	117
92	New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system. Food Research International, 2013, 52, 387-400.	2.9	116
93	Immobilization of Penicillin G Acylase in Epoxy-Activated Magnetic Cellulose Microspheres for Improvement of Biocatalytic Stability and Activities. Biomacromolecules, 2010, 11, 2896-2903.	2.6	114
94	Thermal Gelation of Cellulose in a NaOH/Thiourea Aqueous Solution. Langmuir, 2004, 20, 2086-2093.	1.6	113
95	New Evidences of Glass Transitions and Microstructures of Soy Protein Plasticized with Glycerol. Macromolecular Bioscience, 2005, 5, 237-245.	2.1	113
96	Dissolution of cellulose from different sources in an NaOH/urea aqueous system at low temperature. Cellulose, 2015, 22, 339-349.	2.4	113
97	4D Printing of Robust Hydrogels Consisted of Agarose Nanofibers and Polyacrylamide. ACS Macro Letters, 2018, 7, 442-446.	2.3	113
98	Advances in Proteinous Biomaterials. Journal of Biobased Materials and Bioenergy, 2008, 2, 1-24.	0.1	111
99	Effects of NCO/OH molar ratio on structure and properties of graft-interpenetrating polymer networks from polyurethane and nitrolignin. Polymer, 2002, 43, 2287-2294.	1.8	110
100	Thermally Induced Conformation Transition of Triple-Helical Lentinan in NaCl Aqueous Solution. Journal of Physical Chemistry B, 2008, 112, 10343-10351.	1.2	109
101	Super stretchable hydrogel achieved by non-aggregated spherulites with diameters <5 nm. Nature Communications, 2016, 7, 12095.	5.8	109
102	Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture. Acta Biomaterialia, 2016, 35, 228-237.	4.1	109
103	Molecular weight and anti-tumor activity of the water-soluble polysaccharides isolated by hot water and ultrasonic treatment from the sclerotia and mycelia of Pleurotus tuber-regium. Carbohydrate Polymers, 2004, 56, 123-128.	5.1	108
104	Biocompatible chitin/carbon nanotubes composite hydrogels as neuronal growth substrates. Carbohydrate Polymers, 2017, 174, 830-840.	5.1	108
105	X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions. Polymer, 2006, 47, 2839-2848.	1.8	107
106	Efficient adsorption of Hg2+ ions on chitin/cellulose composite membranes prepared via environmentally friendly pathway. Chemical Engineering Journal, 2011, 173, 689-697.	6.6	107
107	High-Strength and Tough Cellulose Hydrogels Chemically Dual Cross-Linked by Using Low- and High-Molecular-Weight Cross-Linkers. Biomacromolecules, 2019, 20, 1989-1995.	2.6	106
108	Effects of Chitin Whiskers on Physical Properties and Osteoblast Culture of Alginate Based Nanocomposite Hydrogels. Biomacromolecules, 2015, 16, 3499-3507.	2.6	105

#	Article	IF	CITATIONS
109	Flexible and Transparent Cellulose-Based Ionic Film as a Humidity Sensor. ACS Applied Materials & Samp; Interfaces, 2020, 12, 7631-7638.	4.0	105
110	Protein diffusion in agarose hydrogel in situ measured by improved refractive index method. Journal of Controlled Release, 2006, 115, 189-196.	4.8	104
111	Structure and Properties of Cellulose/Fe ₂ O ₃ Nanocomposite Fibers Spun via an Effective Pathway. Journal of Physical Chemistry C, 2008, 112, 4538-4544.	1.5	103
112	Effects of Coagulation Conditions on the Properties of Regenerated Cellulose Films Prepared in NaOH/Urea Aqueous Solution. Industrial & Engineering Chemistry Research, 2005, 44, 522-529.	1.8	102
113	Self-assembled micelles based on hydrophobically modified quaternized cellulose for drug delivery. Colloids and Surfaces B: Biointerfaces, 2011, 83, 313-320.	2.5	102
114	Nanomaterials-modified cellulose paper as a platform for biosensing applications. Nanoscale, 2017, 9, 4366-4382.	2.8	102
115	Construction of Chitin/PVA Composite Hydrogels with Jellyfish Gel-Like Structure and Their Biocompatibility. Biomacromolecules, 2014, 15, 3358-3365.	2.6	101
116	Structure and Properties of Novel Fibers Spun from Cellulose in NaOH/Thiourea Aqueous Solution. Macromolecular Bioscience, 2004, 4, 1105-1112.	2.1	100
117	Immunopotentiation and anti-tumor activity of carboxymethylated-sulfated \hat{l}^2 -(1â†'3)-d-glucan from Poria cocos. International Immunopharmacology, 2010, 10, 398-405.	1.7	98
118	Improved flexibility and water resistance of soy protein thermoplastics containing waterborne polyurethane. Industrial Crops and Products, 2010, 32, 13-20.	2.5	97
119	Blend films from chitosan and konjac glucomannan solutions. Journal of Applied Polymer Science, 2000, 76, 509-515.	1.3	96
120	Deformation Drives Alignment of Nanofibers in Framework for Inducing Anisotropic Cellulose Hydrogels with High Toughness. ACS Applied Materials & Samp; Interfaces, 2017, 9, 43154-43162.	4.0	96
121	Mott–Schottky Effect Leads to Alkyne Semihydrogenation over Pd-Nanocube@N-Doped Carbon. ACS Catalysis, 2019, 9, 4632-4641.	5.5	93
122	Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications. Journal of Chromatography A, 2010, 1217, 5922-5929.	1.8	92
123	Novel fibers fabricated directly from chitin solution and their application as wound dressing. Journal of Materials Chemistry B, 2014, 2, 3427.	2.9	91
124	Highly antibacterial materials constructed from silver molybdate nanoparticles immobilized in chitin matrix. Chemical Engineering Journal, 2013, 234, 124-131.	6.6	90
125	Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution. Cellulose, 2009, 16, 189-198.	2.4	89
126	Construction of cellulose/nanosilver sponge materials and their antibacterial activities for infected wounds healing. Cellulose, 2016, 23, 749-763.	2.4	89

#	Article	IF	CITATIONS
127	Behavior of cellulose in NaOH/Urea aqueous solution characterized by light scattering and viscometry. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 347-353.	2.4	88
128	Physicochemical properties and antitumor activities for sulfated derivatives of lentinan. Carbohydrate Research, 2009, 344, 2209-2216.	1.1	88
129	Intermolecular Interactions and 3D Structure in Cellulose–NaOH–Urea Aqueous System. Journal of Physical Chemistry B, 2014, 118, 10250-10257.	1.2	88
130	Fast Contact of Solid–Liquid Interface Created High Strength Multi-Layered Cellulose Hydrogels with Controllable Size. ACS Applied Materials & Samp; Interfaces, 2014, 6, 1872-1878.	4.0	87
131	Improved Mechanical Properties and Sustained Release Behavior of Cationic Cellulose Nanocrystals Reinforeced Cationic Cellulose Injectable Hydrogels. Biomacromolecules, 2016, 17, 2839-2848.	2.6	87
132	Recyclable Universal Solvents for Chitin to Chitosan with Various Degrees of Acetylation and Construction of Robust Hydrogels. ACS Sustainable Chemistry and Engineering, 2017, 5, 2725-2733.	3.2	87
133	Enhancement of Antitumor Activities in Sulfated and Carboxymethylated Polysaccharides of Ganoderma lucidum. Journal of Agricultural and Food Chemistry, 2009, 57, 10565-10572.	2.4	86
134	Swelling behaviors of superabsorbent chitin/carboxymethylcellulose hydrogels. Journal of Materials Science, 2014, 49, 2235-2242.	1.7	86
135	Construction of Transparent Cellulose-Based Nanocomposite Papers and Potential Application in Flexible Solar Cells. ACS Sustainable Chemistry and Engineering, 2018, 6, 8040-8047.	3.2	86
136	Transparent, conductive cellulose hydrogel for flexible sensor and triboelectric nanogenerator at subzero temperature. Carbohydrate Polymers, 2021, 265, 118078.	5.1	86
137	Solution Properties of Antitumor Sulfated Derivative of α-(1â†'3)-D-Glucan fromGanoderma lucidum. Bioscience, Biotechnology and Biochemistry, 2000, 64, 2172-2178.	0.6	85
138	Paper-Based Bipolar Electrode Electrochemiluminescence Platform for Detection of Multiple miRNAs. Analytical Chemistry, 2021, 93, 1702-1708.	3.2	84
139	Cellulose microporous membranes prepared from NaOH/urea aqueous solution. Journal of Membrane Science, 2002, 210, 77-90.	4.1	83
140	The dissolution of cellulose in NaOH-based aqueous system by two-step process. Cellulose, 2011, 18, 237-245.	2.4	83
141	Role of sodium zincate on cellulose dissolution in NaOH/urea aqueous solution at low temperature. Carbohydrate Polymers, 2011, 83, 1185-1191.	5.1	83
142	Novel regenerated cellulose films prepared by coagulating with water: Structure and properties. Carbohydrate Polymers, 2012, 87, 95-100.	5.1	81
143	Structure and microporous formation of cellulose/silk fibroin blend membranes. Journal of Membrane Science, 2000, 177, 153-161.	4.1	80
144	Evaluation of water soluble \hat{l}^2 -d-glucan from Auricularia auricular-judae as potential anti-tumor agent. Carbohydrate Polymers, 2010, 80, 977-983.	5.1	80

#	Article	IF	Citations
145	A novel cationic polyelectrolyte microsphere for ultrafast and ultra-efficient removal of heavy metal ions and dyes. Chemical Engineering Journal, 2021, 410, 128404.	6.6	80
146	Gelation behaviors of cellulose solution dissolved in aqueous NaOH/thiourea at low temperature. Polymer, 2008, 49, 1027-1036.	1.8	79
147	Distinctive Construction of Chitin-Derived Hierarchically Porous Carbon Microspheres/Polyaniline for High-Rate Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2018, 10, 28918-28927.	4.0	78
148	Triple Helix of \hat{I}^2 -D-Glucan from Lentinus Edodes in 0.5 M NaCl Aqueous Solution Characterized by Light Scattering. Polymer Journal, 2001, 33, 317-321.	1.3	77
149	Structure and properties of regenerated cellulose/tourmaline nanocrystal composite films. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 367-373.	2.4	77
150	Highâ€Strength Cellulose/Poly(ethylene glycol) Gels. ChemSusChem, 2008, 1, 558-563.	3.6	77
151	Evaluation of Mushroom Dietary Fiber (Nonstarch Polysaccharides) from Sclerotia ofPleurotus tuber-regium(Fries) Singer as a Potential Antitumor Agent. Journal of Agricultural and Food Chemistry, 2001, 49, 5059-5062.	2.4	76
152	Controllable Stearic Acid Crystal Induced High Hydrophobicity on Cellulose Film Surface. ACS Applied Materials & Samp; Interfaces, 2013, 5, 585-591.	4.0	76
153	Synthesis of carboxymethyl chitin in aqueous solution and its thermo- and pH-sensitive behaviors. Carbohydrate Polymers, 2016, 137, 600-607.	5.1	7 5
154	Molecular mass and antitumor activities of sulfated derivatives of α-glucan from Poria cocos mycelia. International Journal of Biological Macromolecules, 2004, 34, 231-236.	3.6	74
155	Structure and Properties of Soy Protein Plastics Plasticized with Acetamide. Macromolecular Materials and Engineering, 2006, 291, 820-828.	1.7	74
156	Molecular mass and chain conformations of Rhizoma Panacis Japonici polysaccharides. Carbohydrate Polymers, 2009, 78, 596-601.	5.1	74
157	NMR spectroscopic studies on the mechanism of cellulose dissolution in alkali solutions. Cellulose, 2013, 20, 613-621.	2.4	74
158	Natural Materials Assembled, Biodegradable, and Transparent Paper-Based Electret Nanogenerator. ACS Applied Materials & Diterfaces, 2016, 8, 35587-35592.	4.0	74
159	Effectively promoting wound healing with cellulose/gelatin sponges constructed directly from a cellulose solution. Journal of Materials Chemistry B, 2015, 3, 7518-7528.	2.9	73
160	Evaluation of sulfated fungal \hat{l}^2 -glucans from the sclerotium of Pleurotus tuber-regium as a potential water-soluble anti-viral agent. Carbohydrate Research, 2004, 339, 2297-2301.	1.1	72
161	Chemical modification and antitumor activities of two polysaccharide–protein complexes from Pleurotus tuber-regium. International Journal of Biological Macromolecules, 2009, 45, 109-115.	3.6	72
162	Ampholytic microspheres constructed from chitosan and carrageenan in alkali/urea aqueous solution for purification of various wastewater. Chemical Engineering Journal, 2017, 317, 766-776.	6.6	72

#	Article	IF	CITATIONS
163	Homogenous modification of cellulose with acrylamide in NaOH/urea aqueous solutions. Carbohydrate Polymers, 2008, 73, 18-25.	5.1	71
164	Structure and chain conformation of five water-soluble derivatives of a \hat{l}^2 -d-glucan isolated from Ganoderma lucidum. Carbohydrate Research, 2009, 344, 105-112.	1.1	71
165	A Facile Construction of Supramolecular Complex from Polyaniline and Cellulose in Aqueous System. Macromolecules, 2011, 44, 4565-4568.	2.2	71
166	Fabrication, properties and bioapplications of cellulose/collagen hydrolysate composite films. Carbohydrate Polymers, 2013, 92, 1752-1760.	5.1	71
167	Biocompatible and Biodegradable Bioplastics Constructed from Chitin via a "Green―Pathway for Bone Repair. ACS Sustainable Chemistry and Engineering, 2017, 5, 9126-9135.	3.2	71
168	Effects of lignin as a filler on properties of soy protein plastics. I. Lignosulfonate. Journal of Applied Polymer Science, 2003, 88, 3284-3290.	1.3	70
169	Preparation, chain conformation and anti-tumor activities of water-soluble phosphated (1â†'3)-α-d-glucan from Poria cocos mycelia. Carbohydrate Polymers, 2011, 83, 1363-1369.	5.1	70
170	Chain structures of glucans from Lentinus edodes and their effects on NO production from RAW 264.7 macrophages. Carbohydrate Polymers, 2012, 87, 1855-1862.	5.1	70
171	Preparation and properties of cellulose/silver nanocomposite fibers. Carbohydrate Polymers, 2015, 115, 269-275.	5.1	70
172	Tough and Cell-Compatible Chitosan Physical Hydrogels for Mouse Bone Mesenchymal Stem Cells in Vitro. ACS Applied Materials & Samp; Interfaces, 2016, 8, 19739-19746.	4.0	70
173	Construction of blood compatible lysine-immobilized chitin/carbon nanotube microspheres and potential applications for blood purified therapy. Journal of Materials Chemistry B, 2017, 5, 2952-2963.	2.9	70
174	Rubbery Chitosan/Carrageenan Hydrogels Constructed through an Electroneutrality System and Their Potential Application as Cartilage Scaffolds. Biomacromolecules, 2018, 19, 340-352.	2.6	70
175	Synthesis and characterization of cellulose derivatives prepared in NaOH/urea aqueous solutions. Journal of Polymer Science Part A, 2004, 42, 5911-5920.	2.5	69
176	Morphologies and conformation transition oflentinan in aqueous NaOH solution. Biopolymers, 2004, 75, 187-195.	1.2	69
177	Effects of Moisture on Glass Transition and Microstructure of Glycerol-Plasticized Soy Protein. Macromolecular Bioscience, 2005, 5, 872-880.	2.1	69
178	Construction of high strength hollow fibers by self-assembly of a stiff polysaccharide with short branches in water. Journal of Materials Chemistry A, 2013, 1, 4198.	5.2	69
179	Chain conformation and anti-tumor activity of derivatives of polysaccharide from Rhizoma Panacis Japonici. Carbohydrate Polymers, 2014, 105, 308-316.	5.1	69
180	Carboxymethylated ?-glucans from mushroom sclerotium of Pleurotus tuber-regium as novel water-soluble anti-tumor agent. Carbohydrate Polymers, 2004, 57, 319-325.	5.1	68

#	Article	IF	Citations
181	Influence of coagulation temperature on pore size and properties of cellulose membranes prepared from NaOH–urea aqueous solution. Cellulose, 2007, 14, 205-215.	2.4	68
182	Rheology of triple helical Lentinan in solution: Steady shear viscosity and dynamic oscillatory behavior. Food Hydrocolloids, 2008, 22, 735-741.	5.6	68
183	An Efficient and Environmentally Friendly Method for the Synthesis of Cellulose Carbamate by Microwave Heating. Macromolecular Rapid Communications, 2009, 30, 1504-1508.	2.0	68
184	Structure and chain conformation of water-soluble heteropolysaccharides from Ganoderma lucidum. Carbohydrate Polymers, 2011, 86, 844-851.	5.1	68
185	Triple Helical Polysaccharide-Induced Good Dispersion of Silver Nanoparticles in Water. Biomacromolecules, 2011, 12, 2864-2871.	2.6	67
186	Gelation behavior of cellulose in NaOH/urea aqueous system via cross-linking. Cellulose, 2013, 20, 1669-1677.	2.4	67
187	Biocompatible Chitin Hydrogel Incorporated with PEDOT Nanoparticles for Peripheral Nerve Repair. ACS Applied Materials & Diterfaces, 2021, 13, 16106-16117.	4.0	67
188	Molecular Weight Effects on Properties of Polyurethane/Nitrokonjac Glucomannan Semiinterpenetrating Polymer Networks. Macromolecules, 2001, 34, 2202-2207.	2.2	66
189	Properties and Structure of Soy Protein Isolateâ^'Ethylene Glycol Sheets Obtained by Compression Molding. Industrial & Engineering Chemistry Research, 2001, 40, 1879-1883.	1.8	66
190	Dynamic viscoelastic behavior of triple helical Lentinan in water: Effects of concentration and molecular weight. Polymer, 2007, 48, 6681-6690.	1.8	66
191	Portable Visible-Light Photocatalysts Constructed from Cu ₂ O Nanoparticles and Graphene Oxide in Cellulose Matrix. Journal of Physical Chemistry C, 2014, 118, 7202-7210.	1.5	66
192	Fabrication of cellulose nanofibers from waste brown algae and their potential application as milk thickeners. Food Hydrocolloids, 2018, 79, 473-481.	5.6	66
193	Mechanically Strong Chitin Fibers with Nanofibril Structure, Biocompatibility, and Biodegradability. Chemistry of Materials, 2019, 31, 2078-2087.	3.2	66
194	Chemical Structure and Molecular Weights of \hat{l}_{\pm} -($1\hat{a}_{\uparrow}$ '3)-D-Glucan fromLentinus edodes. Bioscience, Biotechnology and Biochemistry, 1999, 63, 1197-1202.	0.6	65
195	Structure and chain conformation of βâ€glucan isolated from <i>Auricularia auriculaâ€judae</i> . Biopolymers, 2008, 89, 614-622.	1.2	65
196	Primarily Industrialized Trial of Novel Fibers Spun from Cellulose Dope in NaOH/Urea Aqueous Solution. Industrial & Engineering Chemistry Research, 2010, 49, 11380-11384.	1.8	65
197	Strong cellulose hydrogel as underwater superoleophobic coating for efficient oil/water separation. Carbohydrate Polymers, 2020, 229, 115467.	5.1	65
198	Superior strength and highly thermoconductive cellulose/ boron nitride film by stretch-induced alignment. Journal of Materials Chemistry A, 2021, 9, 10304-10315.	5.2	65

#	Article	IF	Citations
199	Fabrication and Properties of Cellulose Hydrated Membrane with Unique Structure. Macromolecular Chemistry and Physics, 2007, 208, 594-602.	1.1	64
200	Properties of cellulose films prepared from NaOH/urea/zincate aqueous solution at low temperature. Cellulose, 2011, 18, 681-688.	2.4	64
201	Effect of Molecular Weight and Degree of Substitution of Quaternized Cellulose on the Efficiency of Gene Transfection. Bioconjugate Chemistry, 2010, 21, 1271-1279.	1.8	63
202	Inclusion Complex Formation of Cellulose in NaOH–Thiourea Aqueous System at Low Temperature. Macromolecular Chemistry and Physics, 2007, 208, 2359-2366.	1.1	62
203	Multiple Conformation Transitions of Triple Helical Lentinan in DMSO/Water by Microcalorimetry. Journal of Physical Chemistry B, 2009, 113, 9915-9923.	1.2	62
204	Cellulose/Chitosan Composite Multifilament Fibers with Two-Switch Shape Memory Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 6981-6990.	3.2	62
205	Construction of cellulose nanofibers/quaternized chitin/organic rectorite composites and their application as wound dressing materials. Biomaterials Science, 2019, 7, 2571-2581.	2.6	62
206	Effects of nanoscale hydroxypropyl lignin on properties of soy protein plastics. Journal of Applied Polymer Science, 2006, 101, 334-341.	1.3	61
207	Chitin Nanofibrils to Stabilize Long-Life Pickering Foams and Their Application for Lightweight Porous Materials. ACS Sustainable Chemistry and Engineering, 2018, 6, 10552-10561.	3.2	61
208	Structure and magnetic properties of regenerated cellulose/Fe ₃ O ₄ nanocomposite films. Journal of Applied Polymer Science, 2009, 111, 2477-2484.	1.3	58
209	Studies on molecular weights of polysaccharides of Auricularia auricula-judae. Carbohydrate Research, 1995, 270, 1-10.	1.1	57
210	Structure and properties of hydroxyapatite/cellulose nanocomposite films. Carbohydrate Polymers, 2012, 87, 2512-2518.	5.1	57
211	Polyphenol-mediated chitin self-assembly for constructing a fully naturally resourced hydrogel with high strength and toughness. Materials Horizons, 2021, 8, 2503-2512.	6.4	57
212	Aligned ramie fiber reinforced arylated soy protein composites with improved properties. Composites Science and Technology, 2009, 69, 555-560.	3.8	56
213	Progress in rigid polysaccharide-based nanocomposites with therapeutic functions. Journal of Materials Chemistry B, 2017, 5, 5690-5713.	2.9	56
214	Mechanically Strong Multifilament Fibers Spun from Cellulose Solution via Inducing Formation of Nanofibers. ACS Sustainable Chemistry and Engineering, 2018, 6, 5314-5321.	3.2	56
215	Biodegradability of Regenerated Cellulose Films in Soil. Industrial & Engineering Chemistry Research, 1996, 35, 4682-4685.	1.8	55
216	Morphology and mechanical properties of semi-interpenetrating polymer networks from polyurethane and benzyl konjac glucomannan. Polymer, 2002, 43, 3979-3986.	1.8	55

#	Article	IF	CITATIONS
217	Chain conformation of sulfated derivatives of \hat{l}^2 -glucan from sclerotia of Pleurotus tuber-regium. Carbohydrate Research, 2003, 338, 2863-2870.	1.1	55
218	Development of a fixed-bed column with cellulose/chitin beads to remove heavy-metal ions. Journal of Applied Polymer Science, 2004, 94, 684-691.	1.3	55
219	A Rapid Process for Producing Cellulose Multi-Filament Fibers from a NaOH/Thiourea Solvent System. Macromolecular Rapid Communications, 2006, 27, 1495-1500.	2.0	55
220	Hydrophobic Modification of Chitin Whisker and Its Potential Application in Structuring Oil. Langmuir, 2015, 31, 1641-1648.	1.6	55
221	Anti-tumor effect of \hat{l}^2 -glucan from Lentinus edodes and the underlying mechanism. Scientific Reports, 2016, 6, 28802.	1.6	55
222	Customizable Multidimensional Self-Wrinkling Structure Constructed via Modulus Gradient in Chitosan Hydrogels. Chemistry of Materials, 2019, 31, 10032-10039.	3.2	55
223	Preparative fractionation of polysaccharides by columns packed with regenerated cellulose gels. Journal of Chromatography A, 1998, 816, 131-136.	1.8	54
224	Biodegradability of Regenerated Cellulose Films Coated with Polyurethane/Natural Polymers Interpenetrating Polymer Networks. Industrial & Engineering Chemistry Research, 1999, 38, 4284-4289.	1.8	54
225	Structure and properties of blend membranes prepared from cellulose and alginate in NaOH/urea aqueous solution. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 451-458.	2.4	54
226	Fiber-like TiO ₂ Nanomaterials with Different Crystallinity Phases Fabricated via a Green Pathway. ACS Applied Materials & Samp; Interfaces, 2011, 3, 2074-2079.	4.0	54
227	Effects of lignin as a filler on properties of soy protein plastics. II. Alkaline lignin. Journal of Applied Polymer Science, 2003, 88, 3291-3297.	1.3	53
228	Structure and Properties of CdS/Regenerated Cellulose Nanocomposites. Macromolecular Materials and Engineering, 2005, 290, 1017-1024.	1.7	53
229	Reinforcement of ramie fibers on regenerated cellulose films. Composites Science and Technology, 2010, 70, 2319-2324.	3.8	53
230	Structure and Properties of Regenerated Cellulose Filaments Prepared from Cellulose Carbamate–NaOH/ZnO Aqueous Solution. ACS Sustainable Chemistry and Engineering, 2014, 2, 2604-2612.	3.2	53
231	Homogeneous synthesis and characterization of chitosan ethers prepared in aqueous alkali/urea solutions. Carbohydrate Polymers, 2018, 185, 138-144.	5.1	53
232	2D ultrathin carbon nanosheets with rich N/O content constructed by stripping bulk chitin for high-performance sodium ion batteries. Nanoscale, 2019, 11, 12626-12636.	2.8	53
233	Transition from Triple Helix to Coil of Lentinan in Solution Measured by SEC, Viscometry, and 13C NMR. Polymer Journal, 2002, 34, 443-449.	1.3	52
234	Determination of molecular size and shape of hyperbranched polysaccharide in solution. Biopolymers, 2006, 83, 414-423.	1.2	52

#	Article	IF	CITATIONS
235	Stability of inclusion complex formed by cellulose in NaOH/urea aqueous solution at low temperature. Carbohydrate Polymers, 2013, 92, 1315-1320.	5.1	52
236	Magnetic cellulose–TiO ₂ nanocomposite microspheres for highly selective enrichment of phosphopeptides. Chemical Communications, 2015, 51, 338-341.	2.2	52
237	Electromechanical polyaniline–cellulose hydrogels with high compressive strength. Soft Matter, 2013, 9, 10129.	1.2	51
238	Investigation of the Scaling Law on Cellulose Solution Prepared at Low Temperature. Journal of Physical Chemistry B, 2008, 112, 4488-4495.	1.2	50
239	An efficient transformation of cellulose into cellulose carbamates assisted by microwave irradiation. Cellulose, 2010, 17, 1115-1125.	2.4	50
240	Immunomodulatory \hat{l}^2 -Glucan from Lentinus edodes Activates Mitogen-activated Protein Kinases and Nuclear Factor- \hat{l}^8 B in Murine RAW 264.7 Macrophages. Journal of Biological Chemistry, 2011, 286, 31194-31198.	1.6	50
241	Synthesis of allyl cellulose in NaOH/urea aqueous solutions and its thiol–ene click reactions. Polymer Chemistry, 2015, 6, 3543-3548.	1.9	50
242	Structure and properties of soy protein films plasticized with hydroxyamine. Journal of Applied Polymer Science, 2009, 111, 1549-1556.	1.3	49
243	A facile method for the homogeneous synthesis of cyanoethyl cellulose in NaOH/urea aqueous solutions. Polymer Chemistry, 2010, 1, 1662.	1.9	49
244	Effect of culture media on the chemical and physical characteristics of polysaccharides isolated from Poria cocos mycelia. Carbohydrate Research, 2003, 338, 1507-1515.	1.1	48
245	Microfiltration performance of regenerated cellulose membrane prepared at low temperature for wastewater treatment. Cellulose, 2010, 17, 1159-1169.	2.4	48
246	Construction of controllable size silver nanoparticles immobilized on nanofibers of chitin microspheres via green pathway. Nano Research, 2016, 9, 2149-2161.	5.8	48
247	High-Strength Films Consisted of Oriented Chitosan Nanofibers for Guiding Cell Growth. Biomacromolecules, 2017, 18, 3904-3912.	2.6	48
248	Cationic hydrophobicity promotes dissolution of cellulose in aqueous basic solution by freezing–thawing. Physical Chemistry Chemical Physics, 2018, 20, 14223-14233.	1.3	48
249	Strength enhanced hydrogels constructed from agarose in alkali/urea aqueous solution and their application. Chemical Engineering Journal, 2018, 331, 177-184.	6.6	48
250	Triple-Helix Conformation of a Polysaccharide Determined with Light Scattering, AFM, and Molecular Dynamics Simulation. Macromolecules, 2018, 51, 10150-10159.	2.2	48
251	Structure and Properties of Composites Compression-Molded from Polyurethane Prepolymer and Various Soy Products. Industrial & Engineering Chemistry Research, 2003, 42, 6786-6794.	1.8	47
252	In situ synthesis of plate-like Fe2O3 nanoparticles in porous cellulose films with obvious magnetic anisotropy. Cellulose, 2011, 18, 663-673.	2.4	47

#	Article	IF	Citations
253	Fabrication of high-density silver nanoparticles on the surface of alginate microspheres for application in catalytic reaction. Journal of Materials Chemistry A, 2014, 2, 8491-8499.	5.2	47
254	Highly rate and cycling stable electrode materials constructed from polyaniline/cellulose nanoporous microspheres. Journal of Materials Chemistry A, 2015, 3, 16424-16429.	5.2	47
255	Influences of Coagulation Conditions on the Structure and Properties of Regenerated Cellulose Filaments via Wet-Spinning in LiOH/Urea Solvent. ACS Sustainable Chemistry and Engineering, 2018, 6, 4056-4067.	3.2	47
256	Chain conformation and biological activities of hyperbranched fucoidan derived from brown algae and its desulfated derivative. Carbohydrate Polymers, 2019, 208, 86-96.	5.1	47
257	Natural polysaccharides with different conformations: extraction, structure and anti-tumor activity. Journal of Materials Chemistry B, 2020, 8, 9652-9667.	2.9	47
258	lon exchange membranes blended by cellulose cuoxam with alginate. Journal of Membrane Science, 1997, 124, 195-201.	4.1	46
259	Aggregation Behavior of Triple Helical Polysaccharide with Low Molecular Weight in Diluted Aqueous Solution. Journal of Physical Chemistry B, 2010, 114, 4945-4954.	1.2	46
260	Robust chitin films with good biocompatibility and breathable properties. Carbohydrate Polymers, 2019, 212, 361-367.	5.1	46
261	Blend membranes of cellulose cuoxam/casein. Journal of Membrane Science, 1995, 103, 65-71.	4.1	45
262	Homogenous Synthesis of Hydroxyethylcellulose in NaOH/Urea Aqueous Solution. Macromolecular Bioscience, 2006, 6, 84-89.	2.1	45
263	Structure and properties of cellulose/poly(<i>N</i> â€isopropylacrylamide) hydrogels prepared by IPN strategy. Polymers for Advanced Technologies, 2011, 22, 1329-1334.	1.6	45
264	Ultra-lightweight cellulose foam material: preparation and properties. Cellulose, 2017, 24, 1417-1426.	2.4	45
265	Construction of highly stable selenium nanoparticles embedded in hollow nanofibers of polysaccharide and their antitumor activities. Nano Research, 2017, 10, 3775-3789.	5.8	45
266	Collapse and Association of Denatured Lentinan in Water/Dimethlysulfoxide Solutions. Biomacromolecules, 2004, 5, 1893-1898.	2.6	44
267	Evaluation of sulfated α-glucans from Poria cocos mycelia as potential antitumor agent. Carbohydrate Polymers, 2006, 64, 337-344.	5.1	44
268	Synthesis and Alignment of Iron Oxide Nanoparticles in a Regenerated Cellulose Film. Macromolecular Rapid Communications, 2006, 27, 2084-2089.	2.0	44
269	Renaturation of triple helical polysaccharide lentinan in water-diluted dimethylsulfoxide solution. Carbohydrate Research, 2010, 345, 419-424.	1.1	44
270	Construction of inorganic nanoparticles by micro-nano-porous structure of cellulose matrix. Cellulose, 2011, 18, 945-956.	2.4	44

#	Article	IF	Citations
271	Green Method for Production of Cellulose Multifilament from Cellulose Carbamate on a Pilot Scale. ACS Sustainable Chemistry and Engineering, 2014, 2, 2363-2370.	3.2	44
272	Anti-hepatoma activity of the stiff branched \hat{l}^2 - <scp>d</scp> -glucan and effects of molecular weight. Journal of Materials Chemistry B, 2016, 4, 4565-4573.	2.9	44
273	One-step synthesis of size-tunable gold nanoparticles immobilized on chitin nanofibrils via green pathway and their potential applications. Chemical Engineering Journal, 2017, 315, 573-582.	6.6	44
274	Stretchable, tough, self-recoverable, and cytocompatible chitosan/cellulose nanocrystals/polyacrylamide hybrid hydrogels. Carbohydrate Polymers, 2019, 222, 114977.	5.1	44
275	Role of polyethylene glycol in formation and structure of regenerated cellulose microporous membrane. Journal of Membrane Science, 1999, 161, 31-40.	4.1	43
276	Chemical structure and chain conformation of the water-insoluble glucan isolated fromPleurotus tuber-regium. Biopolymers, 2001, 59, 457-464.	1.2	43
277	Effects of Molecular Weight on the Miscibility and Properties of Polyurethane/Benzyl Starch Semi-Interpenetrating Polymer Networks. Biomacromolecules, 2005, 6, 671-677.	2.6	43
278	Preparation and Characterization of Novel Quaternized Cellulose Nanoparticles as Protein Carriers. Macromolecular Bioscience, 2009, 9, 857-863.	2.1	43
279	Extended chain conformation of \hat{l}^2 -glucan and its effect on antitumor activity. Journal of Materials Chemistry B, 2017, 5, 5623-5631.	2.9	43
280	Additive Printed All-Cellulose Membranes with Hierarchical Structure for Highly Efficient Separation of Oil/Water Nanoemulsions. ACS Applied Materials & Samp; Interfaces, 2019, 11, 44375-44382.	4.0	43
281	Blend films from konjac glucomannan and sodium alginate solutions and their preservative effect. Journal of Applied Polymer Science, 2000, 77, 617-626.	1.3	42
282	Synthesis and Stabilization of Gold Nanoparticles Induced by Denaturation and Renaturation of Triple Helical Î ² -Glucan in Water. Biomacromolecules, 2013, 14, 1787-1794.	2.6	42
283	The linear structure of β-glucan from baker's yeast and its activation of macrophage-like RAW264.7 cells. Carbohydrate Polymers, 2016, 148, 61-68.	5.1	42
284	Hierarchical Microspheres Constructed from Chitin Nanofibers Penetrated Hydroxyapatite Crystals for Bone Regeneration. Biomacromolecules, 2017, 18, 2080-2089.	2.6	42
285	Size-controllable ultrafine palladium nanoparticles immobilized on calcined chitin microspheres as efficient and recyclable catalysts for hydrogenation. Nanoscale, 2018, 10, 14719-14725.	2.8	42
286	Strong, transparent cellulose film as gas barrier constructed via water evaporation induced dense packing. Journal of Membrane Science, 2019, 585, 99-108.	4.1	42
287	Injectable, Self-Healing, \hat{I}^2 -Chitin-Based Hydrogels with Excellent Cytocompatibility, Antibacterial Activity, and Potential As Drug/Cell Carriers. ACS Applied Bio Materials, 2019, 2, 196-204.	2.3	42
288	Polyphenol-driving assembly for constructing chitin-polyphenol-metal hydrogel as wound dressing. Carbohydrate Polymers, 2022, 290, 119444.	5.1	42

#	Article	IF	CITATIONS
289	Double-stranded helix of xanthan: Rigidity in 0.01M aqueous sodium chloride containing 0.01 N hydrochloric acid. Biopolymers, 1987, 26, 333-341.	1.2	41
290	Chemical Structure of the Water-Insoluble Polysaccharide Isolated from the Fruiting Body of Ganoderma lucidum. Polymer Journal, 1998, 30, 838-842.	1.3	41
291	Preparation and characterization of soy protein plastics plasticized with waterborne polyurethane. Polymer International, 2005, 54, 233-239.	1.6	41
292	Extraordinary Reinforcement Effect of Three-Dimensionally Nanoporous Cellulose Gels in Poly(ε-caprolactone) Bionanocomposites. ACS Applied Materials & Samp; Interfaces, 2014, 6, 7204-7213.	4.0	41
293	Effects of molecular weight of nitrocellulose on structure and properties of polyurethane/nitrocellulose IPNs. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 1623-1631.	2.4	40
294	Homogeneous hydroxyethylation of cellulose in NaOH/urea aqueous solution. Polymer Bulletin, 2005, 53, 243-248.	1.7	40
295	Spherical nanocomposite particles prepared from mixed cellulose–chitosan solutions. Cellulose, 2016, 23, 3105-3115.	2.4	40
296	Regenerated cellulose microporous membranes by mixing cellulose cuoxam with a water soluble polymer. Journal of Membrane Science, 1996, 114, 149-155.	4.1	39
297	Effects of solid substrate on structure and properties of casting waterborne polyurethane/carboxymethylchitin films. Polymer, 2004, 45, 3535-3545.	1.8	39
298	Construction of cellulose–phosphor hybrid hydrogels and their application for bioimaging. Journal of Materials Chemistry B, 2014, 2, 7559-7566.	2.9	39
299	Construction of PANI–cellulose composite fibers with good antistatic properties. Journal of Materials Chemistry A, 2014, 2, 7669-7673.	5.2	39
300	Dissolution and Metastable Solution of Cellulose in NaOH/Thiourea at 8 \hat{A}° C for Construction of Nanofibers. Journal of Physical Chemistry B, 2017, 121, 1793-1801.	1.2	39
301	Highly Efficient One-Step Purification of Sulfated Polysaccharides via Chitosan Microspheres Adsorbents. ACS Sustainable Chemistry and Engineering, 2017, 5, 3195-3203.	3.2	39
302	Construction of \hat{l}^2 -FeOOH@tunicate cellulose nanocomposite hydrogels and their highly efficient photocatalytic properties. Carbohydrate Polymers, 2020, 229, 115470.	5.1	39
303	Molecular weight and aggregation behaviour in solution of \hat{l}^2 -d-glucan from Poria cocos sclerotium. Carbohydrate Research, 1997, 303, 193-197.	1.1	38
304	Preparation and characterization of konjac glucomannan and sodium carboxymethylcellulose blend films. Journal of Applied Polymer Science, 2001, 80, 26-31.	1.3	38
305	Structure-properties relationship of starch/waterborne polyurethane composites. Journal of Applied Polymer Science, 2003, 90, 3325-3332.	1.3	38
306	Chain conformation of carboxymethylated derivatives of $(1\hat{a}^{\dagger})^{-1^2}$ -d-glucan from Poria cocos sclerotium. Carbohydrate Polymers, 2006, 65, 504-509.	5.1	38

#	Article	IF	CITATIONS
307	Effects of Crystalline Phase and Particle Size on the Properties of Plate-Like Fe $<$ sub $>$ 0 $<$ sub $>$ 0 $<$ sub $>$ 3 $<$ /sub $>$ Nanoparticles during \hat{I}^3 - to $\hat{I}\pm$ -Phase Transformation. Journal of Physical Chemistry C, 2011, 115, 3602-3611.	1.5	38
308	Properties of auriculariaauricula-judae ?-D-glucan in dilute solution. Biopolymers, 1995, 36, 695-700.	1,2	37
309	Synthesis and characterization of polyurethane-chitosan interpenetrating polymer networks. Journal of Applied Polymer Science, 1998, 68, 1321-1329.	1.3	37
310	Molecular mass and chain conformation of carboxymethylated derivatives of ?-glucan from sclerotia of Pleurotus tuber-regium. Biopolymers, 2003, 68, 150-159.	1.2	37
311	Determination of the Triple Helical Chain Conformation of \hat{l}^2 -Glucan by Facile and Reliable Triple-Detector Size Exclusion Chromatography. Journal of Physical Chemistry B, 2014, 118, 668-675.	1.2	37
312	Photoelectrochemical biosensor of HIV-1 based on cascaded photoactive materials and triple-helix molecular switch. Biosensors and Bioelectronics, 2019, 139, 111325.	5.3	37
313	Multifunctional chitin-based barrier membrane with antibacterial and osteogenic activities for the treatment of periodontal disease. Carbohydrate Polymers, 2021, 269, 118276.	5.1	37
314	Effect of the Particle Size in Dispersions on the Properties of Waterborne Polyurethane/Casein Composites. Industrial & Engineering Chemistry Research, 2004, 43, 3336-3342.	1.8	36
315	Properties and biodegradability of water-resistant soy protein/poly(É>-caprolactone)/toluene-2,4-diisocyanate composites. Polymer Degradation and Stability, 2006, 91, 2189-2197.	2.7	36
316	Properties and Bioapplications of Blended Cellulose and Corn Protein Films. Macromolecular Bioscience, 2009, 9, 849-856.	2.1	36
317	Structure and properties of the regenerated cellulose membranes prepared from cellulose carbamate in NaOH/ZnO aqueous solution. Cellulose, 2014, 21, 2819-2830.	2.4	36
318	Induction of mesenchymal stem cell differentiation in the absence of soluble inducer for cutaneous wound regeneration by a chitin nanofiberâ€based hydrogel. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e867-e880.	1.3	36
319	Anti-leukemia activities of selenium nanoparticles embedded in nanotube consisted of triple-helix \hat{l}^2 -d-glucan. Carbohydrate Polymers, 2020, 240, 116329.	5.1	36
320	Preparation and Characterization of Thermoplastic Starch Mixed with Waterborne Polyurethane. Industrial & Description of Chemistry Research, 2001, 40, 558-564.	1.8	35
321	Ways of strengthening biodegradable soy-dreg plastics. Journal of Applied Polymer Science, 2003, 88, 422-427.	1.3	35
322	Transport of Glucose and Poly(ethylene glycol)s in Agarose Gels Studied by the Refractive Index Method. Macromolecules, 2005, 38, 5236-5242.	2.2	35
323	Structure and mechanical properties of soy protein materials plasticized by Thiodiglycol. Journal of Applied Polymer Science, 2009, 111, 970-977.	1.3	35
324	Quaternized cellulose-supported gold nanoparticles as capillary coatings to enhance protein separation by capillary electrophoresis. Journal of Chromatography A, 2014, 1343, 160-166.	1.8	35

#	Article	IF	Citations
325	Characterization of new sorbent constructed from Fe3O4/chitin magnetic beads for the dynamic adsorption of Cd2+ ions. Journal of Materials Science, 2014, 49, 123-133.	1.7	35
326	Facile construction of cellulose nanocomposite aerogel containing TiO2 nanoparticles with high content and small size and their applications. Cellulose, 2017, 24, 2229-2240.	2.4	35
327	Effects of the molecular weight on the properties of thermoplastics prepared from soy protein isolate. Journal of Applied Polymer Science, 2001, 82, 3373-3380.	1.3	34
328	Solution properties of $(1\hat{a}^{\dagger})^2$ -1±-D-glucan and its sulfated derivative from Poria cocos mycelia via fermentation tank. Biopolymers, 2005, 79, 28-38.	1.2	34
329	Investigation on Metastable Solution of Cellulose Dissolved in NaOH/Urea Aqueous System at Low Temperature. Journal of Physical Chemistry B, 2011, 115, 12801-12808.	1.2	34
330	Advancing the Use of Sustainability Metrics in <i>ACS Sustainable Chemistry & Engineering </i> ACS Sustainable Chemistry and Engineering, 2018, 6, 1-1.	3.2	34
331	Pd/TiO ₂ @ Carbon Microspheres Derived from Chitin for Highly Efficient Photocatalytic Degradation of Volatile Organic Compounds. ACS Sustainable Chemistry and Engineering, 2019, 7, 1658-1666.	3.2	34
332	Biocompatible cellulose-based supramolecular nanoparticles driven by host–guest interactions for drug delivery. Carbohydrate Polymers, 2020, 237, 116114.	5.1	34
333	Properties of regenerated cellulose films plasticized with ?-monoglycerides. Journal of Applied Polymer Science, 2003, 89, 3500-3505.	1.3	33
334	Properties of crosslinked casein/waterborne polyurethane composites. Journal of Applied Polymer Science, 2004, 91, 332-338.	1.3	33
335	Antitumor Activities of O-Sulfonated Derivatives of (1→3)-α-D-Glucan from DifferentLentinus edodes. Bioscience, Biotechnology and Biochemistry, 2006, 70, 38-46.	0.6	33
336	Structure and Properties of Blend Films Prepared from Castor Oil-Based Polyurethane/Soy Protein Derivative. Industrial & Engineering Chemistry Research, 2008, 47, 9330-9336.	1.8	33
337	Water-Induced Hydrophobicity of Soy Protein Materials Containing 2,2-Diphenyl-2-hydroxyethanoic Acid. Biomacromolecules, 2008, 9, 2430-2437.	2.6	33
338	Light scattering study on the dynamic behaviour of cellulose inclusion complex in LiOH/urea aqueous solution. Polymer, 2011, 52, 3857-3864.	1.8	33
339	Cellulose/casein blend membranes from NaOH/urea solution. Journal of Applied Polymer Science, 2001, 81, 3260-3267.	1.3	32
340	Cellulose/chitin films blended in NaOH/urea aqueous solution. Journal of Applied Polymer Science, 2002, 86, 1679-1683.	1.3	32
341	Flexible chain conformation of $(1\hat{a}^{\dagger})^2$ -d-glucan from Poria cocos sclerotium in NaOH/urea aqueous solution. Carbohydrate Polymers, 2009, 75, 586-591.	5.1	32
342	Rheological behavior of waterborne polyurethane/starch aqueous dispersions during cure. Polymer, 2009, 50, 5474-5481.	1.8	32

#	Article	IF	CITATIONS
343	Rheological Behaviors and Miscibility of Mixture Solution of Polyaniline and Cellulose Dissolved in an Aqueous System. Biomacromolecules, 2012, 13, 2370-2378.	2.6	32
344	Preparation of helical fibers from cellulose–cuprammonium solution based on liquid rope coiling. RSC Advances, 2014, 4, 9112.	1.7	32
345	In situ synthesis of Ag3PO4/cellulose nanocomposites with photocatalytic activities under sunlight. Cellulose, 2014, 21, 3371-3382.	2.4	32
346	Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(<scp> </scp> -lactide- <i>co</i> -caprolactone) Nanocomposites. Biomacromolecules, 2016, 17, 1506-1515.	2.6	32
347	Ultra-small Pd clusters supported by chitin nanowires as highly efficient catalysts. Nano Research, 2018, 11, 3145-3153.	5.8	32
348	Injectable chitin hydrogels with self-healing property and biodegradability as stem cell carriers. Carbohydrate Polymers, 2021, 256, 117574.	5.1	32
349	Biocompatible and biodegradable super-toughness regenerated cellulose via water molecule-assisted molding. Chemical Engineering Journal, 2021, 417, 129229.	6.6	32
350	Anisotropic Hybrid Hydrogels Constructed via the Noncovalent Assembly for Biomimetic Tissue Scaffold. Advanced Functional Materials, 2022, 32, .	7.8	32
351	Effects of urea and sodium hydroxide on the molecular weight and conformation of α-(1â†'3)-d-glucan from Lentinusedodes in aqueous solution. Carbohydrate Research, 2000, 327, 431-438.	1.1	31
352	Structure, properties and biodegradability of water resistant regenerated cellulose films coated with polyurethane/benzyl konjac glucomannan semi-IPN coating. Polymer Degradation and Stability, 2004, 86, 51-57.	2.7	31
353	Polymer fractionation using chromatographic column packed with novel regenerated cellulose beads modified with silane. Journal of Chromatography A, 2005, 1063, 71-77.	1.8	31
354	Influence of finishing oil on structure and properties of multi-filament fibers from cellulose dope in NaOH/urea aqueous solution. Cellulose, 2008, 15, 81-89.	2.4	31
355	Gel formation and lowâ€temperature intramolecular conformation transition of a tripleâ€helical polysaccharide lentinan in water. Biopolymers, 2008, 89, 852-861.	1.2	31
356	Effects of Coagulation Conditions on Properties of Multifilament Fibers Based on Dissolution of Cellulose in NaOH/Urea Aqueous Solution. Industrial & Engineering Chemistry Research, 2008, 47, 8676-8683.	1.8	31
357	Effect of Heating on Chain Conformation of Branched \hat{l}^2 -Glucan in Water. Journal of Physical Chemistry B, 2013, 117, 8370-8377.	1.2	31
358	A novel gene carrier prepared from triple helical \hat{l}^2 -glucan and polydeoxyadenylic acid. Journal of Materials Chemistry B, 2014, 2, 933.	2.9	31
359	Dendritic nanotubes self-assembled from stiff polysaccharides as drug and probe carriers. Journal of Materials Chemistry B, 2017, 5, 2616-2624.	2.9	31
360	New Approach for the Fabrication of Carboxymethyl Cellulose Nanofibrils and the Reinforcement Effect in Water-Borne Polyurethane. ACS Sustainable Chemistry and Engineering, 2019, 7, 11850-11860.	3.2	31

#	Article	IF	Citations
361	Laser light-scattering studies of pachyman. Carbohydrate Research, 1998, 308, 339-343.	1.1	30
362	Regenerated cellulose films from NaOH/urea aqueous solution by coagulating with sulfuric acid. Journal of Macromolecular Science - Physics, 2002, 41, 1-15.	0.4	30
363	Blend membranes prepared from cellulose and soy protein isolate in NaOH/thiourea aqueous solution. Journal of Applied Polymer Science, 2004, 94, 748-757.	1.3	30
364	Structure and physical properties of methylcellulose synthesized in NaOH/urea solution. Polymer Bulletin, 2006, 56, 349-357.	1.7	30
365	Unique Stress Whitening and High-Toughness Double-Cross-Linked Cellulose Films. ACS Sustainable Chemistry and Engineering, 2019, 7, 1707-1717.	3.2	30
366	Flexible and strong Fe3O4/cellulose composite film as magnetic and UV sensor. Applied Surface Science, 2020, 507, 145092.	3.1	30
367	Influence of different amides as plasticizer on the properties of soy protein plastics. Journal of Applied Polymer Science, 2007, 106, 130-137.	1.3	29
368	Rapid dissolution of spruce cellulose in H2SO4 aqueous solution at low temperature. Cellulose, 2016, 23, 3463-3473.	2.4	29
369	Phase transition identification of cellulose nanocrystal suspensions derived from various raw materials. Journal of Applied Polymer Science, 2018, 135, 45702.	1.3	29
370	Cross-Linked Cellulose Membranes with Robust Mechanical Property, Self-Adaptive Breathability, and Excellent Biocompatibility. ACS Sustainable Chemistry and Engineering, 2019, 7, 19799-19806.	3.2	29
371	A quaternized chitin derivatives, egg white protein and montmorillonite composite sponge with antibacterial and hemostatic effect for promoting wound healing. Composites Part B: Engineering, 2022, 234, 109661.	5.9	29
372	Water-Resistant Film from Polyurethane/Nitrocellulose Coating to Regenerated Cellulose. Industrial & Lamp; Engineering Chemistry Research, 1997, 36, 2651-2656.	1.8	28
373	Mechanical properties and biodegradability of crosslinked soy protein isolate/waterborne polyurethane composites. Journal of Applied Polymer Science, 2005, 95, 465-473.	1.3	28
374	Supramolecular Structure and Properties of High Strength Regenerated Cellulose Films. Macromolecular Bioscience, 2009, 9, 29-35.	2.1	28
375	Application of Chitin Hydrogels for Seed Germination, Seedling Growth of Rapeseed. Journal of Plant Growth Regulation, 2014, 33, 195-201.	2.8	28
376	Shear-aligned tunicate-cellulose-nanocrystal-reinforced hydrogels with mechano-thermo-chromic properties. Journal of Materials Chemistry C, 0, , .	2.7	28
377	Investigation of molecular masses and aggregation of \hat{l}^2 -d-glucan from Poria cocos sclerotium by size-exclusion chromatography. Journal of Chromatography A, 1999, 839, 49-55.	1.8	27
378	Preparation and properties of water-resistant soy dreg/benzyl konjac glucomannan composite plastics. Journal of Applied Polymer Science, 2003, 90, 3790-3796.	1.3	27

#	Article	IF	CITATIONS
379	Structure and Properties of Cellulose Films Reinforced by Chitin Whiskers. Macromolecular Materials and Engineering, 2013, 298, 303-310.	1.7	27
380	Constructing flexible cellulose–Cu nanocomposite film through in situ coating with highly single-side conductive performance. Journal of Materials Chemistry C, 2014, 2, 524-529.	2.7	27
381	Light weight, mechanically strong and biocompatible α-chitin aerogels from different aqueous alkali hydroxide/urea solutions. Science China Chemistry, 2016, 59, 1405-1414.	4.2	27
382	Weak interactions and their impact on cellulose dissolution in an alkali/urea aqueous system. Physical Chemistry Chemical Physics, 2017, 19, 17909-17917.	1.3	27
383	Super Strong All-Cellulose Composite Filaments by Combination of Inducing Nanofiber Formation and Adding Nanofibrillated Cellulose. Biomacromolecules, 2018, 19, 4386-4395.	2.6	27
384	Biocompatible, antibacterial and anti-inflammatory zinc ion cross-linked quaternized celluloseâ€'sodium alginate composite sponges for accelerated wound healing. International Journal of Biological Macromolecules, 2021, 191, 27-39.	3.6	27
385	A graphene oxide facilitated a highly porous and effective antibacterial regenerated cellulose membrane containing stabilized silver nanoparticles. Cellulose, 2014, 21, 4261-4270.	2.4	26
386	Moisture and solvent responsive cellulose/SiO2 nanocomposite materials. Cellulose, 2015, 22, 553-563.	2.4	26
387	Three-Dimensional Nanoporous Cellulose Gels as a Flexible Reinforcement Matrix for Polymer Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2015, 7, 22990-22998.	4.0	26
388	Mechanically Strong Shape-Memory and Solvent-Resistant Double-Network Polyurethane/Nanoporous Cellulose Gel Nanocomposites. ACS Sustainable Chemistry and Engineering, 2019, 7, 15974-15982.	3.2	26
389	Distinctive Viewpoint on the Rapid Dissolution Mechanism of α-Chitin in Aqueous Potassium Hydroxide–Urea Solution at Low Temperatures. Macromolecules, 2020, 53, 5588-5598.	2.2	26
390	Effects of secondary structure on miscibility and properties of semi-IPN from polyurethane and benzyl konjac glucomannan. Polymer, 2003, 44, 6689-6696.	1.8	25
391	Intermolecular interaction and properties of cross-linked materials from poly(ester-urethane) and nitrochitosan. Carbohydrate Polymers, 2005, 60, 399-409.	5.1	25
392	Structure and properties of composite films prepared from cellulose and nanocrystalline titanium dioxide particles. Journal of Applied Polymer Science, 2006, 101, 3600-3608.	1.3	25
393	Structure and Properties of Soy Protein Plastics with ε-Caprolactone/Glycerol as Binary Plasticizers. Industrial & Engineering Chemistry Research, 2008, 47, 9389-9395.	1.8	25
394	Continuous Meter-Scale Wet-Spinning of Cornlike Composite Fibers for Eco-Friendly Multifunctional Electronics. ACS Applied Materials & Samp; Interfaces, 2021, 13, 40953-40963.	4.0	25
395	Solvent Mediating the <i>in Situ</i> Self-Assembly of Polysaccharides for 3D Printing Biomimetic Tissue Scaffolds. ACS Nano, 2021, 15, 17790-17803.	7.3	25
396	Dynamic viscoelastic behavior of triple helical Lentinan in water: Effect of temperature. Carbohydrate Polymers, 2008, 73, 26-34.	5.1	24

#	Article	IF	Citations
397	Creation of Hydrophobic Materials Fabricated from Soy Protein and Natural Rubber: Surface, Interface, and Properties. Macromolecular Materials and Engineering, 2010, 295, 451-459.	1.7	24
398	Rheological Study of Physical Cross-Linked Quaternized Cellulose Hydrogels Induced by \hat{l}^2 -Glycerophosphate. Langmuir, 2012, 28, 4965-4973.	1.6	24
399	Interaction between polydeoxyadenylic acid and \hat{l}^2 -glucan from Lentinus edodes. European Polymer Journal, 2012, 48, 1329-1338.	2.6	24
400	Carbon Nanofibrous Microspheres Promote the Oxidative Double Carbonylation of Alkanes with CO. CheM, 2018, 4, 2861-2871.	5.8	24
401	Dual-confined SiO encapsulated in PVA derived carbon layer and chitin derived N-doped carbon nanosheets for high-performance lithium storage. Chemical Engineering Journal, 2021, 420, 129754.	6.6	24
402	Chemical structures of water-soluble polysaccharides from Rhizoma Panacis Japonici. Carbohydrate Research, 2009, 344, 1136-1140.	1.1	23
403	Effects of carbon nanotubes on rheological behavior in cellulose solution dissolved at low temperature. Polymer, 2010, 51, 2748-2754.	1.8	23
404	Novel highly branched water-soluble heteropolysaccharides as immunopotentiators to inhibit S-180 tumor cell growth in BALB/c mice. Carbohydrate Polymers, 2012, 87, 427-434.	5.1	23
405	Facile Construction of a Highly Dispersed Pt Nanocatalyst Anchored on Biomass-Derived N/O-Doped Carbon Nanofibrous Microspheres and Its Catalytic Hydrogenation. ACS Applied Materials & Camp; Interfaces, 2020, 12, 51459-51467.	4.0	23
406	High-performance triboelectric nanogenerator based on chitin for mechanical-energy harvesting and self-powered sensing. Carbohydrate Polymers, 2022, 291, 119586.	5.1	23
407	Solution properties of an \hat{l} ±-($1\hat{a}$ †'3)-d-glucan from Lentinus edodes and its sulfated derivatives. Carbohydrate Research, 2002, 337, 155-160.	1.1	22
408	Dynamic Viscoelastic Properties of Cellulose Carbamate Dissolved in NaOH Aqueous Solution. Biomacromolecules, 2011, 12, 1927-1934.	2.6	22
409	Cellulose-based hydrogels with excellent microstructural replication ability and cytocompatibility for microfluidic devices. Cellulose, 2013, 20, 1897-1909.	2.4	22
410	Self-assembly of graphene oxide on the surface of aluminum foil. New Journal of Chemistry, 2013, 37, 181-187.	1.4	22
411	Hierarchical microspheres with macropores fabricated from chitin as 3D cell culture. Journal of Materials Chemistry B, 2019, 7, 5190-5198.	2.9	22
412	The effect of cellulose molecular weight on internal structure and properties of regenerated cellulose fibers as spun from the alkali/urea aqueous system. Polymer, 2021, 215, 123379.	1.8	22
413	Structure and Properties of Cellulose Films Coated with Polyurethane/Benzyl Starch Semi-IPN Coating. Industrial & Engineering Chemistry Research, 2006, 45, 4193-4199.	1.8	21
414	Proteins as Sources of Materials. , 2008, , 479-493.		21

#	Article	IF	CITATIONS
415	Fabrication of Hollow Materials by Fast Pyrolysis of Cellulose Composite Fibers with Heterogeneous Structures. Angewandte Chemie - International Edition, 2016, 55, 13504-13508.	7.2	21
416	Rationally exfoliating chitin into 2D hierarchical porous carbon nanosheets for high-rate energy storage. Nano Research, 2020, 13, 1604-1613.	5.8	21
417	Properties and interfacial bonding of regenerated cellulose films coated with polyurethane-chitosan IPN coating. Journal of Applied Polymer Science, 1998, 68, 1313-1319.	1.3	20
418	Interfacial Structure and Properties of Regenerated Cellulose Films Coated with Superthin Polyurethane/Benzoyl Konjac Glucomannan Coating. Industrial & Engineering Chemistry Research, 2002, 41, 1234-1241.	1.8	20
419	Transfection efficiency and internalization of the gene carrier prepared from a triple-helical \hat{l}^2 -glucan and polydeoxyadenylic acid in macrophage RAW264.7 cells. Journal of Materials Chemistry B, 2015, 3, 3789-3798.	2.9	20
420	Controllable Wrinkling Patterns on Chitosan Microspheres Generated from Self-Assembling Metal Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2019, 11, 22824-22833.	4.0	20
421	Green and Economical Strategy for Spinning Robust Cellulose Filaments. ACS Sustainable Chemistry and Engineering, 2020, 8, 14927-14937.	3.2	20
422	Universal preparation of cellulose-based colorimetric sensor for heavy metal ion detection. Carbohydrate Polymers, 2020, 236, 116037.	5.1	20
423	Chitin microsphere supported Pd nanoparticles as an efficient and recoverable catalyst for CO oxidation and Heck coupling reaction. Carbohydrate Polymers, 2021, 251, 117020.	5.1	20
424	Preparation and Properties of Polyurethane/Elaeostearin Interpenetrating Polymer Networks Coating to Regenerated Cellulose Films. Industrial & Engineering Chemistry Research, 1998, 37, 2681-2686.	1.8	19
425	Changes in shape and size of the stiff branched \hat{l}^2 -glucan in dimethlysulfoxide/water solutions. Carbohydrate Polymers, 2016, 138, 86-93.	5.1	19
426	Electrochemiluminescence cytosensing platform based on Ru(bpy)32+@silica-Au nanocomposite as luminophore and AuPd nanoparticles as coreaction accelerator for in situ evaluation of intracellular H2O2. Talanta, 2019, 199, 485-490.	2.9	19
427	Miscibility and properties of polyurethane/benzyl starch semi-interpenetrating polymer networks. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 603-615.	2.4	18
428	Effect of Molecular Mass on Antitumor Activity of Heteropolysaccharide fromPoria cocos. Bioscience, Biotechnology and Biochemistry, 2005, 69, 631-634.	0.6	18
429	Variable chain conformations of renatured βâ€glucan in dimethylsulfoxide/water mixture. Biopolymers, 2012, 97, 988-997.	1.2	18
430	Single chain morphology and nanofiber-like aggregates of branched \hat{l}^2 -(1 \hat{a} †'3)- d-glucan in water/dimethylsulfoxide solution. Carbohydrate Polymers, 2016, 137, 287-294.	5.1	18
431	Influence of cation on the cellulose dissolution investigated by MD simulation and experiments. Cellulose, 2017, 24, 4641-4651.	2.4	18
432	Interaction between –OH groups of methylcellulose and solvent in NaOH/urea aqueous system at low temperature. Cellulose, 2012, 19, 671-678.	2.4	17

#	Article	IF	CITATIONS
433	Transparent and Printable Regenerated Kenaf Cellulose/PVA Film. BioResources, 2014, 9, .	0.5	17
434	Cation/macromolecule interaction in alkaline cellulose solution characterized with pulsed field-gradient spin-echo NMR spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 7486-7490.	1.3	17
435	Facile construction of mechanically tough collagen fibers reinforced by chitin nanofibers as cell alignment templates. Journal of Materials Chemistry B, 2018, 6, 918-929.	2.9	17
436	Elucidation of molecular pathways responsible for the accelerated wound healing induced by a novel fibrous chitin dressing. Biomaterials Science, 2019, 7, 5247-5257.	2.6	17
437	Construction of cellulose/ZnO composite microspheres in NaOH/zinc nitrate aqueous solution via one-step method. Cellulose, 2019, 26, 557-568.	2.4	17
438	Surface engineering of cellulose film with myristic acid for high strength, self-cleaning and biodegradable packaging materials. Carbohydrate Polymers, 2021, 269, 118315.	5.1	17
439	Solution properties of a water-insoluble (1?3)-?glucan isolated from Poria cocos mycelia. Carbohydrate Polymers, 2004, 57, 205-209.	5.1	16
440	Solution properties of water-insoluble polysaccharides from the mycelium of Ganoderma tsugae. Carbohydrate Polymers, 2005, 59, 351-356.	5.1	16
441	Construction of size-controllable gold nanoparticles immobilized on polysaccharide nanotubes by in situ one-pot synthesis. International Journal of Biological Macromolecules, 2018, 113, 240-247.	3.6	16
442	Mechanically strong polystyrene nanocomposites by peroxide-induced grafting of styrene monomers within nanoporous cellulose gels. Carbohydrate Polymers, 2018, 199, 473-481.	5.1	16
443	Dual Play of Chitinâ€Derived Nâ€Doped Carbon Nanosheets Enabling Highâ€Performance Naâ€SeS ₂ Half/Full Cells. Batteries and Supercaps, 2020, 3, 165-173.	2.4	16
444	Aggregation of Aeromonas Gum in Aqueous Solution. Polymer Journal, 1999, 31, 150-153.	1.3	15
445	Effects of molecular weight and arm number on properties of star-shape styrene-butadiene-styrene triblock copolymer. Journal of Applied Polymer Science, 2005, 95, 832-840.	1.3	15
446	Hair-Inspired Crystal Growth of HOA in Cavities of Cellulose Matrix via Hydrophobic–Hydrophilic Interface Interaction. ACS Applied Materials & Samp; Interfaces, 2014, 6, 9508-9516.	4.0	15
447	Temperature and time-dependent self-assembly and gelation behavior of chitin in aqueous KOH/urea solution. Giant, 2020, 4, 100038.	2.5	15
448	Loose Pre-Cross-Linking Mediating Cellulose Self-Assembly for 3D Printing Strong and Tough Biomimetic Scaffolds. Biomacromolecules, 2022, 23, 877-888.	2.6	15
449	One-step synthesis of ultra-small silver nanoparticles-loaded triple-helix \hat{l}^2 -glucan nanocomposite for highly catalytic hydrogenation of 4-nitrophenol and dyes. Chemical Engineering Journal, 2022, 442, 136114.	6.6	15
450	The composites of triple-helix glucan nanotubes/selenium nanoparticles target hepatocellular carcinoma to enhance ferroptosis by depleting glutathione and augmenting redox imbalance. Chemical Engineering Journal, 2022, 446, 137110.	6.6	15

#	Article	IF	CITATIONS
451	In situ monitoring gelation process of N,N-dimethylacrylamide by refractive index technique. Polymer, 2002, 43, 6761-6765.	1.8	14
452	Construction of Fluorescent Cellulose Biobased Plastics and their Potential Application in Anti-Counterfeiting Banknotes. Macromolecular Materials and Engineering, 2016, 301, 377-382.	1.7	14
453	Uptake of intraperitoneally administrated triple helical \hat{l}^2 -glucan for antitumor activity in murine tumor models. Journal of Materials Chemistry B, 2017, 5, 9337-9345.	2.9	14
454	Effects of excluded volume and polydispersity on solution properties of lentinan in 0.1M NaOH solution. Biopolymers, 2005, 78, 187-196.	1.2	13
455	Effect of stirring conditions on cellulose dissolution in NaOH/urea aqueous solution at low temperature. Journal of Applied Polymer Science, 2012, 126, E470.	1.3	13
456	Structure and properties of films fabricated from chitin solution by coagulating with heating. Journal of Applied Polymer Science, 2014, 131, .	1.3	13
457	Selective hydrothermal degradation of cellulose to formic acid in alkaline solutions. Cellulose, 2018, 25, 5659-5668.	2.4	13
458	The conversion of nanocellulose into solvent-free nanoscale liquid crystals by attaching long side-arms for multi-responsive optical materials. Journal of Materials Chemistry C, 2020, 8, 11022-11031.	2.7	13
459	Facile fabrication of highly dispersed Pd catalyst on nanoporous chitosan and its application in environmental catalysis. Carbohydrate Polymers, 2022, 286, 119313.	5.1	13
460	A New Network Composite Material Based on Soy Dreg Modified with Polyurethane Prepolymer. Macromolecular Materials and Engineering, 2007, 292, 484-494.	1.7	12
461	Highly Selective Conversion of Cellobiose and Cellulose to Hexitols by Ru-Based Homogeneous Catalyst under Acidic Conditions. Industrial & Engineering Chemistry Research, 2016, 55, 5263-5270.	1.8	12
462	Surface-initiated atom transfer radical polymerization grafting from nanoporous cellulose gels to create hydrophobic nanocomposites. RSC Advances, 2018, 8, 27045-27053.	1.7	12
463	<scp>Highâ€6trength</scp> and Tough Crystalline <scp>Polysaccharideâ€Based</scp> Materials ^{â€} . Chinese Journal of Chemistry, 2020, 38, 761-771.	2.6	12
464	Extracellular matrix-mimicking nanofibrous chitosan microspheres as cell micro-ark for tissue engineering. Carbohydrate Polymers, 2022, 292, 119693.	5.1	12
465	Anisotropic chitosan/tunicate cellulose nanocrystals hydrogel with tunable interference color and acid-responsiveness. Carbohydrate Polymers, 2022, 295, 119866.	5.1	12
466	Effects of reaction and cure temperatures on morphology and properties of poly(ester-urethane). Journal of Applied Polymer Science, 2006, 100, 708-714.	1.3	11
467	Effects of external factors on the arrangement of plate-liked Fe2O3 nanoparticles in cellulose scaffolds. Carbohydrate Polymers, 2012, 87, 830-838.	5.1	11
468	Lentinan greatly enhances the dispersibility of single-walled carbon nanotubes in water and decreases the cytotoxicity. Bioactive Carbohydrates and Dietary Fibre, 2013, 1, 111-119.	1.5	11

#	Article	IF	Citations
469	Construction of silver nanoparticles by the triple helical polysaccharide from black fungus and the antibacterial activities. International Journal of Biological Macromolecules, 2021, 182, 1170-1178.	3.6	11
470	Phase transition of thermosensitive amphiphilic cellulose esters bearing olig(oxyethylene)s. Polymer Bulletin, 2000, 45, 381-388.	1.7	10
471	SOLUTION PROPERTIES OF PACHYMAN FROM PORIA COCOS MYCELIA IN DIMETHYL SULFOXIDE. Journal of Macromolecular Science - Physics, 2001, 40, 147-156.	0.4	10
472	Dilute-solution behavior of aeromonas gum, a heteropolysaccharide. Polymer Bulletin, 2002, 48, 491-498.	1.7	10
473	Fractionation and characterization of a Polysaccharide from the sclerotia of Pleurotus tuber-regium by preparative size-exclusion chromatography. Journal of Proteomics, 2003, 56, 281-289.	2.4	10
474	The molecular structure and solution conformation of an acidic heteropolysaccharide from <i>Auricularia auriculaâ€judae</i> Biopolymers, 2011, 95, 217-227.	1.2	10
475	The LiCl effect on the conformation of lentinan in DMSO. Biopolymers, 2012, 97, 840-845.	1.2	10
476	Study on the interaction between urea and cellulose by combining solid-state 13C CP/MAS NMR and extended Hýckel charges. Cellulose, 2014, 21, 4019-4027.	2.4	10
477	Recoverable hydrogel with high stretchability and toughness achieved by low-temperature hydration of Portland cement. Materials Chemistry Frontiers, 2018, 2, 2076-2080.	3.2	10
478	New insights into the anti- hepatoma mechanism of triple-helix \hat{l}^2 - glucan by metabolomics profiling. Carbohydrate Polymers, 2021, 269, 118289.	5.1	10
479	Synthesis and properties of O-2-[2-(2-methoxyethoxy)ethoxy] acetyl cellulose. Journal of Polymer Science Part A, 2001, 39, 376-382.	2.5	9
480	Toughened composites prepared from castor oil based polyurethane and soy dreg by a one-step reactive extrusion process. Journal of Applied Polymer Science, 2006, 101, 953-960.	1.3	9
481	Assembly of single-stranded polydeoxyadenylic acid and \hat{l}^2 -glucan probed by the sensing platform of graphene oxide based on the fluorescence resonance energy transfer and fluorescence anisotropy. Analyst, The, 2013, 138, 2661.	1.7	9
482	Robust and thermoplastic hydrogels with surface micro-patterns for highly oriented growth of osteoblasts. Journal of Materials Chemistry B, 2017, 5, 8446-8450.	2.9	9
483	In situ exfoliated silk fibroin nanoribbons enhanced chitin hydrogel for bile duct restoration. Chemical Engineering Journal, 2021, 422, 130088.	6.6	9
484	Expectations for Papers on Sustainable Materials in <i>ACS Sustainable Chemistry & Engineering </i> In ACS Sustainable Chemistry and Engineering, 2020, 8, 1703-1704.	3.2	9
485	Polysaccharide-based polyelectrolytes hollow microcapsules constructed by layer-by-layer technique. Carbohydrate Polymers, 2013, 96, 528-535.	5.1	8
486	Advances in Cellulose Hydrophobicity Improvement. ACS Symposium Series, 2014, , 241-274.	0.5	8

#	Article	IF	Citations
487	Heat-induced conformation transition of the comb-branched \hat{l}^2 -glucan in dimethyl sulfoxide/water mixture. Carbohydrate Polymers, 2017, 157, 1404-1412.	5.1	8
488	Effect of the synthesis route on the structure and properties of polyurethane/nitrokonjac glucomannan semi-interpenetrating polymer networks. Journal of Applied Polymer Science, 2003, 90, 1948-1954.	1.3	7
489	In Situ Investigation of Drug Diffusion in Hydrogels by the Refractive Index Method. Analytical Chemistry, 2004, 76, 2807-2812.	3.2	7
490	Effects of Temperature on Morphology and Properties of Films Prepared from Poly(ester-urethane) and Nitrochitosan. Macromolecular Materials and Engineering, 2006, 291, 148-154.	1.7	7
491	Chain conformation and bioactivity of waterâ€soluble polysaccharide extracted from <i>Rhizoma Panacis Japonici</i>). Biopolymers, 2010, 93, 383-390.	1.2	7
492	Editable and bidirectional shape memory chitin hydrogels based on physical/chemical crosslinking. Cellulose, 2019, 26, 9085-9094.	2.4	7
493	The Evolution of ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2020, 8, 1-1.	3.2	6
494	Robust, magnetic cellulose/Fe3O4 film with anisotropic sensory property. Cellulose, 2021, 28, 2353-2364.	2.4	6
495	Molecular weight and aggregation of Aeromonas gum treated with dimethyl sulfoxide in aqueous solution. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2269-2276.	2.4	5
496	Why Wasn't My <i>ACS Sustainable Chemistry & Engineering </i> Manuscript Sent Out for Review?. ACS Sustainable Chemistry and Engineering, 2019, 7, 1-2.	3.2	5
497	Insight into Morphology Change of Chitin Microspheres using Tertiary Butyl Alcohol/H ₂ O Binary System Freezeâ€Drying Method. Macromolecular Rapid Communications, 2021, 42, e2000502.	2.0	5
498	Pt(IV) Prodrugs Designed to Embed in Nanotubes of a Polysaccharide for Drug Delivery. ACS Applied Bio Materials, 2021, 4, 4841-4848.	2.3	5
499	Two-Dimensional Wrinkled N-Rich Carbon Nanosheets Fabricated from Chitin via Fast Pyrolysis as Optimized Electrocatalyst. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	4
500	Separation of superoxide dismutase by size-exclusion chromatography column packed with regenerated cellulose gels. Journal of Applied Polymer Science, 2003, 89, 763-768.	1.3	3
501	Synthesis and characterization of poly(ester urethane)/nitrokonjac glucomannan semi-interpenetrating polymer networks. Journal of Applied Polymer Science, 2003, 90, 2224-2228.	1.3	3
502	Molecular weight and arm number of a star-shaped styreneâ€"butadiene block copolymer synthesized on a pilot-vessel scale. Journal of Applied Polymer Science, 2007, 103, 1853-1859.	1.3	3
503	Effects of NCO/OH molar ratio on miscibility and properties of semiinterpenetrating polymer networks from polyurethane and benzyl konjac glucomannan. Journal of Applied Polymer Science, 2003, 88, 1304-1310.	1.3	2
504	Molecular architectures of four-arm star-shaped styrene-butadiene copolymer. Journal of Applied Polymer Science, 2005, 96, 961-965.	1.3	2

#	Article	IF	CITATIONS
505	Expectations for Manuscripts in ACS Sustainable Chemistry & Engineering: Scope Summary and Call for Creativity. ACS Sustainable Chemistry and Engineering, 2020, 8, 16046-16047.	3.2	2
506	Expectations for Manuscripts on Biomass Feedstocks and Processing in <i>ACS Sustainable Chemistry & Engineering </i> <ir> <ir> & amp; Engineering </ir> i>. ACS Sustainable Chemistry and Engineering, 2020, 8, 11031-11032.</ir>	3.2	2
507	SUPERMOLECULAR STRUCTURE AND PROPERTIES OF CELLULOSE/GELATIN COMPOSITE FILMS. Acta Polymerica Sinica, 2011, 011, 1098-1104.	0.0	2
508	STUDIES ON ANTITUMOR ACTIVITY OF A WATER-SOLUBLE HYPERBRANCHED POLYSACCHARIDE AND ITS SULFATED DERIVATIVES. Acta Polymerica Sinica, 2009, 009, 852-859.	0.0	1
509	Chain Conformation of an Alkaliâ€Soluble Polysaccharide from Mycelium of Ganoderma tsugae. Journal of Macromolecular Science - Physics, 2005, 44, 445-453.	0.4	0
510	Preparation and properties of polyurethane/benzyl amylose semiâ€interpenetrating networks. Journal of Applied Polymer Science, 2010, 116, 1299-1305.	1.3	0