Guoli Tu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9043877/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancing stability of red perovskite nanocrystals through copper substitution for efficient light-emitting diodes. Nano Energy, 2019, 62, 434-441.	16.0	103
2	Ion-Induced Formation of Charge-Transfer States in Conjugated Polyelectrolytes. Journal of the American Chemical Society, 2009, 131, 8913-8921.	13.7	78
3	Large-Scale Flexible Surface-Enhanced Raman Scattering (SERS) Sensors with High Stability and Signal Homogeneity. ACS Applied Materials & Interfaces, 2020, 12, 45332-45341.	8.0	71
4	Highly Luminescent and Stable CsPbI ₃ Perovskite Nanocrystals with Sodium Dodecyl Sulfate Ligand Passivation for Red-Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2021, 12, 2437-2443.	4.6	71
5	Growth mechanism of CsPbBr3 perovskite nanocrystals by a co-precipitation method in a CSTR system. Nano Research, 2019, 12, 121-127.	10.4	55
6	One-Dimensional Sb ₂ Se ₃ Enabling a Highly Flexible Photodiode for Light-Source-Free Heart Rate Detection. ACS Photonics, 2020, 7, 352-360.	6.6	53
7	Dopant-free 3,3′-bithiophene derivatives as hole transport materials for perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 3661-3666.	10.3	50
8	Red-emitting CsPbBrI2/PbSe heterojunction nanocrystals with high luminescent efficiency and stability for bright light-emitting diodes. Nano Energy, 2019, 66, 104142.	16.0	40
9	In Situ Synthesis of Ultrastable CsPbBr ₃ Perovskite Nanocrystals Coated with Polyimide in a CSTR System. ACS Applied Materials & Interfaces, 2020, 12, 3080-3085.	8.0	37
10	Bimetallic Core–Shell Nanostars with Tunable Surface Plasmon Resonance for Surface-Enhanced Raman Scattering. ACS Applied Nano Materials, 2020, 3, 10885-10894.	5.0	34
11	Anionic conjugated polyelectrolyte–wetting properties with an emission layer and free ion migration when serving as a cathode interface layer in polymer light emitting diodes (PLEDs). Journal of Materials Chemistry, 2012, 22, 15490.	6.7	33
12	Light Scattering in Nanoparticle Doped Transparent Polyimide Substrates. ACS Applied Materials & Interfaces, 2017, 9, 14990-14997.	8.0	32
13	Flexible QLED and OPV based on transparent polyimide substrate with rigid alicyclic asymmetric isomer. Organic Electronics, 2017, 51, 54-61.	2.6	32
14	One-dimensional Sb2Se3 enabling ultra-flexible solar cells and mini-modules for IoT applications. Nano Energy, 2021, 86, 106101.	16.0	30
15	High Performance Soluble Polyimides from Ladder-Type Fluorinated Dianhydride with Polymorphism. Polymers, 2018, 10, 546.	4.5	25
16	Highly selective palladium-catalyzed Stille coupling reaction toward chlorine-containing NIR electroluminescent polymers. Journal of Materials Chemistry C, 2015, 3, 7463-7468.	5.5	24
17	Amphiphilic Diblock Fullerene Derivatives as Cathode Interfacial Layers for Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 2649-2657.	8.0	22
18	Flexible Perovskite Solar Cells via Surface-Confined Silver Nanoparticles on Transparent Polyimide Substrates. Polymers, 2019, 11, 427.	4.5	22

Guoli Tu

#	Article	IF	CITATIONS
19	Donor–Acceptor Interface Stabilizer Based on Fullerene Derivatives toward Efficient and Thermal Stable Organic Photovoltaics. ACS Applied Materials & Interfaces, 2017, 9, 6615-6623.	8.0	20
20	Self-Assembly of 1-Pyrenemethanol on ZnO Surface toward Combined Cathode Buffer Layers for Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 36082-36089.	8.0	19
21	A Straightforward Synthesis of Chlorineâ€Bearing Donor–Acceptor Alternating Copolymers with Deep Frontier Orbital Levels. Macromolecular Chemistry and Physics, 2014, 215, 1388-1395.	2.2	17
22	Efficient deep-red electroluminescent donor-acceptor copolymers based on 6,7-dichloroquinoxaline. Organic Electronics, 2017, 46, 276-282.	2.6	16
23	Lithiumâ€lonâ€Based Conjugated Polyelectrolyte as an Interface Material for Efficient and Stable Nonâ€Fullerene Organic Solar Cells. ChemSusChem, 2019, 12, 1401-1409.	6.8	15
24	Soluble sulfoxide biphenyl polyimide film with transmittance exceeding 90%. Polymer, 2022, 254, 125050.	3.8	15
25	Conventional polymer solar cells with power conversion efficiencies increased to >9% by a combination of methanol treatment and an anionic conjugated polyelectrolyte interface layer. RSC Advances, 2014, 4, 50988-50992.	3.6	14
26	Straight forward synthesis of conjugated polymers for deep red to NIR PLED containing chlorine atoms on the backbone. Organic Electronics, 2014, 15, 1440-1447.	2.6	14
27	Highly selective Palladium-catalyzed Suzuki coupling reaction toward chlorine-containing electroluminescence polymers. Dyes and Pigments, 2015, 120, 112-117.	3.7	14
28	The Influences of Sulfoxide Electron Traps in Transparent Polyimides with Low Retardation, Yellow Index, and CTE. Macromolecular Materials and Engineering, 2021, 306, 2000606.	3.6	14
29	Plasmon-induced near-field and resonance energy transfer enhancement of photodegradation activity by Au wrapped CuS dual-chain. Nano Research, 2022, 15, 5671-5677.	10.4	14
30	Efficient inverted polymer solar cells based on conjugated polyelectrolyte and zinc oxide modified ITO electrode. Applied Physics Letters, 2015, 106, 083302.	3.3	12
31	Efficient non-fullerene organic solar cells based on thickness-insensitive conjugated small molecule cathode interface. Solar Energy, 2019, 191, 219-226.	6.1	12
32	An effective approach to obtain high efficiency red light-emitting polymers via incorporating benzodithiazole units. Dyes and Pigments, 2018, 156, 39-44.	3.7	10
33	Deep-red organic light-emitting diodes with stable electroluminescent spectra based on zinc complex host material. RSC Advances, 2017, 7, 40533-40538.	3.6	9
34	Ether chain functionalized fullerene derivatives as cathode interface materials for efficient organic solar cells. Frontiers of Optoelectronics, 2018, 11, 348-359.	3.7	8
35	Novel N-heteroacene small molecules as electron donors for organic bulk heterojunction photovoltaics. Organic Electronics, 2018, 57, 93-97.	2.6	7
36	Synthesis of amphiphilic triblock fullerene derivatives and their solvent induced self assembly in organic solar cells. Organic Electronics, 2019, 71, 36-44.	2.6	7

Guoli Tu

#	Article	IF	CITATIONS
37	Selfâ€Assembled Monomolecular Layer Modified ZnO for Efficient Inverted Polymer Solar Cells with 11.53% Efficiency. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900372.	2.4	6
38	Vertically phase-separation based on amination-functionalized fullerene derivatives in inverted polymer solar cells. Solar Energy, 2019, 181, 405-413.	6.1	5
39	Durable metal-enhanced fluorescence flexible platform by in-situ growth of micropatterned Ag nanospheres. Journal of Materials Science and Technology, 2021, 69, 89-95.	10.7	5
40	Synthesis and Application of Functionalized Diblock Amphiphilic Fullerene Derivatives. Macromolecular Chemistry and Physics, 2019, 220, 1800477.	2.2	4
41	The fabrication of nanostructures with a large range of dimensions and the potential application for light outcoupling in organic light-emitting diodes. Journal of Micromechanics and Microengineering, 2019, 29, 035007.	2.6	4
42	Synthesis of two A-B-C type conjugated amphiphilic triblock fullerene derivatives and their application in organic solar cells. Chinese Chemical Letters, 2020, 31, 119-124.	9.0	4
43	Functionalized Amphiphilic Diblock Fullerene Derivatives as a Cathode Buffer Layer for Efficient Inverted Organic Solar Cells. ACS Omega, 2020, 5, 1336-1345.	3.5	3
44	Side chains and backbone structures influence on 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT)-based low-bandgap conjugated copolymers for organic photovoltaics. Frontiers of Optoelectronics, 2013, 6, 418-428.	3.7	1
45	Unraveling the Moisture-induced Decomposition Mechanism of Red-Emitting Perovskite CsPbBrl ₂ Nanocrystals and Enhancing their Stability through Copper(II) Substitution. , 2019, , .		1
46	Indium tin oxide-free inverted polymer solar cells with ultrathin metal transparent electrodes. Frontiers of Optoelectronics, 2017, 10, 402-408.	3.7	0