George C C Dicenzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9043323/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA Methylation in <i>Ensifer</i> Species during Free-Living Growth and during Nitrogen-Fixing Symbiosis with <i>Medicago</i> spp MSystems, 2022, 7, e0109221.	3.8	7
2	Pervasive RNA Regulation of Metabolism Enhances the Root Colonization Ability of Nitrogen-Fixing Symbiotic α-Rhizobia. MBio, 2022, 13, e0357621.	4.1	7
3	Taxonomy of Rhizobiaceae revisited: proposal of a new framework for genus delimitation. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	1.7	125
4	Brachypodium Antifreeze Protein Gene Products Inhibit Ice Recrystallisation, Attenuate Ice Nucleation, and Reduce Immune Response. Plants, 2022, 11, 1475.	3.5	3
5	Reference nodule transcriptomes for <scp> <i>Melilotus officinalis</i> </scp> and <scp> <i>Medicago sativa</i> </scp> cv. Algonquin. Plant Direct, 2022, 6, .	1.9	4
6	<i>Proteobacteria</i> Contain Diverse flg22 Epitopes That Elicit Varying Immune Responses in <i>Arabidopsis thaliana</i> . Molecular Plant-Microbe Interactions, 2021, 34, 504-510.	2.6	19
7	The <i>Brachypodium distachyon</i> cold-acclimated plasma membrane proteome is primed for stress resistance. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	6
8	Cold acclimation and prospects for cold-resilient crops. Plant Stress, 2021, 2, 100028.	5.5	29
9	Minimal gene set from <i>Sinorhizobium</i> (<i>Ensifer</i>) <i>meliloti</i> pSymA required for efficient symbiosis with <i>Medicago</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	16
10	Tn-Core: Functionally Interpreting Transposon-Sequencing Data with Metabolic Network Analysis. Methods in Molecular Biology, 2021, 2189, 199-215.	0.9	1
11	Cold Acclimation in Brachypodium Is Accompanied by Changes in Above-Ground Bacterial and Fungal Communities. Plants, 2021, 10, 2824.	3.5	7
12	The genomes of rhizobia. Advances in Botanical Research, 2020, , 213-249.	1.1	17
13	Rhizobium indicum sp. nov., isolated from root nodules of pea (Pisum sativum) cultivated in the Indian trans-Himalayas. Systematic and Applied Microbiology, 2020, 43, 126127.	2.8	21
14	Genome-scale metabolic reconstruction of the symbiosis between a leguminous plant and a nitrogen-fixing bacterium. Nature Communications, 2020, 11, 2574.	12.8	56
15	Symbiotic and Nonsymbiotic Members of the Genus <i>Ensifer</i> (syn. <i>Sinorhizobium</i>) Are Separated into Two Clades Based on Comparative Genomics and High-Throughput Phenotyping. Genome Biology and Evolution, 2020, 12, 2521-2534.	2.5	30
16	Deciphering the Symbiotic Plant Microbiome: Translating the Most Recent Discoveries on Rhizobia for the Improvement of Agricultural Practices in Metal-Contaminated and High Saline Lands. Agronomy, 2019, 9, 529.	3.0	32
17	Size-defined synthesis of magnetic nanorods by Salvia hispanica essential oil with electromagnetic excitation properties useful in microwave imagining. Journal of Magnetism and Magnetic Materials, 2019, 480, 87-96.	2.3	2
18	Multidisciplinary approaches for studying rhizobium–legume symbioses. Canadian Journal of Microbiology, 2019, 65, 1-33.	1.7	77

GEORGE C C DICENZO

#	Article	IF	CITATIONS
19	Chromids Aid Genome Expansion and Functional Diversification in the Family <i>Burkholderiaceae</i> . Molecular Biology and Evolution, 2019, 36, 562-574.	8.9	34
20	Tn-Core: A Toolbox for Integrating Tn-seq Gene Essentiality Data and Constraint-Based Metabolic Modeling. ACS Synthetic Biology, 2019, 8, 158-169.	3.8	15
21	Genomic Diversity and Evolution of Rhizobia. , 2019, , 37-46.		2
22	Preparation and characterization of gold nanoparticles prepared with aqueous extracts of Lamiaceae plants and the effect of follow-up treatment with atmospheric pressure glow microdischarge. Arabian Journal of Chemistry, 2019, 12, 4118-4130.	4.9	54
23	Fermented juices as reducing and capping agents for the biosynthesis of size-defined spherical gold nanoparticles. Journal of Saudi Chemical Society, 2018, 22, 767-776.	5.2	5
24	Inter-replicon Gene Flow Contributes to Transcriptional Integration in the <i>Sinorhizobium meliloti</i> Multipartite Genome. G3: Genes, Genomes, Genetics, 2018, 8, 1711-1720.	1.8	14
25	Succinate Transport Is Not Essential for Symbiotic Nitrogen Fixation by Sinorhizobium meliloti or Rhizobium leguminosarum. Applied and Environmental Microbiology, 2018, 84, .	3.1	24
26	Techniques for Large-Scale Bacterial Genome Manipulation and Characterization of the Mutants with Respect to In Silico Metabolic Reconstructions. Methods in Molecular Biology, 2018, 1716, 291-314.	0.9	4
27	Harnessing Rhizobia to Improve Heavy-Metal Phytoremediation by Legumes. Genes, 2018, 9, 542.	2.4	72
28	Creation and Characterization of a Genomically Hybrid Strain in the Nitrogen-Fixing Symbiotic Bacterium <i>Sinorhizobium meliloti</i> . ACS Synthetic Biology, 2018, 7, 2365-2378.	3.8	24
29	Robustness encoded across essential and accessory replicons of the ecologically versatile bacterium Sinorhizobium meliloti. PLoS Genetics, 2018, 14, e1007357.	3.5	49
30	Pulse-Modulated Radio-Frequency Alternating-Current-Driven Atmospheric-Pressure Glow Discharge for Continuous-Flow Synthesis of Silver Nanoparticles and Evaluation of Their Cytotoxicity toward Human Melanoma Cells. Nanomaterials, 2018, 8, 398.	4.1	15
31	Genomic and Biotechnological Characterization of the Heavy-Metal Resistant, Arsenic-Oxidizing Bacterium Ensifer sp. M14. Genes, 2018, 9, 379.	2.4	25
32	Heterologous Complementation Reveals a Specialized Activity for BacA in the <i>Medicago</i> – <i>Sinorhizobium meliloti</i> Symbiosis. Molecular Plant-Microbe Interactions, 2017, 30, 312-324.	2.6	24
33	PhoU Allows Rapid Adaptation to High Phosphate Concentrations by Modulating PstSCAB Transport Rate in Sinorhizobium meliloti. Journal of Bacteriology, 2017, 199, .	2.2	39
34	A Key Regulator of the Glycolytic and Gluconeogenic Central Metabolic Pathways in <i>Sinorhizobium meliloti</i> . Genetics, 2017, 207, 961-974.	2.9	15
35	The Divided Bacterial Genome: Structure, Function, and Evolution. Microbiology and Molecular Biology Reviews, 2017, 81, .	6.6	190
36	A putative 3â€hydroxyisobutyryl oA hydrolase is required for efficient symbiotic nitrogen fixation in <i>Sinorhizobium meliloti</i> and <i>Sinorhizobium fredii</i> NGR234. Environmental Microbiology, 2017, 19, 218-236.	3.8	14

GEORGE C C DICENZO

#	Article	IF	CITATIONS
37	Trade, Diplomacy, and Warfare: The Quest for Elite Rhizobia Inoculant Strains. Frontiers in Microbiology, 2017, 8, 2207.	3.5	67
38	Loss of malic enzymes leads to metabolic imbalance and altered levels of trehalose and putrescine in the bacterium Sinorhizobium meliloti. BMC Microbiology, 2016, 16, 163.	3.3	10
39	Genomic resources for identification of the minimal <scp><scp>N₂</scp></scp> â€fixing symbiotic genome. Environmental Microbiology, 2016, 18, 2534-2547.	3.8	36
40	Metabolic modelling reveals the specialization of secondary replicons for niche adaptation in Sinorhizobium meliloti. Nature Communications, 2016, 7, 12219.	12.8	85
41	Effects of synthetic large-scale genome reduction on metabolism and metabolic preferences in a nutritionally complex environment. Metabolomics, 2016, 12, 1.	3.0	18
42	<scp>l</scp> -Hydroxyproline and <scp>d</scp> -Proline Catabolism in Sinorhizobium meliloti. Journal of Bacteriology, 2016, 198, 1171-1181.	2.2	20
43	Genetic redundancy is prevalent within the 6.7ÂMb Sinorhizobium meliloti genome. Molecular Genetics and Genomics, 2015, 290, 1345-1356.	2.1	40
44	Proline auxotrophy in Sinorhizobium meliloti results in a plant-specific symbiotic phenotype. Microbiology (United Kingdom), 2015, 161, 2341-2351.	1.8	24
45	Examination of Prokaryotic Multipartite Genome Evolution through Experimental Genome Reduction. PLoS Genetics, 2014, 10, e1004742.	3.5	89
46	Cell Growth Inhibition upon Deletion of Four Toxin-Antitoxin Loci from the Megaplasmids of Sinorhizobium meliloti. Journal of Bacteriology, 2014, 196, 811-824.	2.2	42
47	The tRNA ^{arg} Gene and <i>engA</i> Are Essential Genes on the 1.7-Mb pSymB Megaplasmid of Sinorhizobium meliloti and Were Translocated Together from the Chromosome in an Ancestral Strain Journal of Bacteriology 2013, 195, 202-212	2.2	40