
Ruibin Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9043143/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An electrochemical chiral sensor based on the synergy of chiral ionic liquid and 3D-NGMWCNT for tryptophan enantioselective recognition. Mikrochimica Acta, 2021, 188, 163.	5.0	15
2	Self-assembled reduced graphene oxide/polyaniline/sodium carboxymethyl cellulose nanocomposite for voltammetric recognition of tryptophan enantiomers. Journal of Materials Science: Materials in Electronics, 2021, 32, 11791-11804.	2.2	6
3	Chiral Nitrogen-Doped Graphene Quantum Dot Electrochemical Sensor for Recognition of Tartaric Acid Isomers. Journal of the Electrochemical Society, 2021, 168, 067515.	2.9	3
4	Fabrication of an electrochemical chiral sensor via an integrated polysaccharides/3D nitrogen-doped graphene-CNT frame. Bioelectrochemistry, 2020, 131, 107396.	4.6	30
5	A synthesis of graphene quantum dots/hollow TiO2 nanosphere composites for enhancing visible light photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2020, 31, 1430-1441.	2.2	10
6	The one-pot synthesis of porous Ni _{0.85} Se nanospheres on graphene as an efficient and durable electrocatalyst for overall water splitting. New Journal of Chemistry, 2020, 44, 17313-17322.	2.8	19
7	Highly sensitive fluorescence sensor for mercury(II) based on boron- and nitrogen-co-doped graphene quantum dots. Journal of Colloid and Interface Science, 2020, 566, 357-368.	9.4	62
8	Electrochemical chiral sensing of tryptophan enantiomers by using 3D nitrogen-doped reduced graphene oxide and self-assembled polysaccharides. Mikrochimica Acta, 2019, 186, 557.	5.0	43
9	Perylene-functionalized graphene sheets modified with β-cyclodextrin for the voltammetric discrimination of phenylalanine enantiomers. Bioelectrochemistry, 2019, 129, 189-198.	4.6	34
10	Perylene-functionalized graphene sheets modified with chitosan for voltammetric discrimination of tryptophan enantiomers. Mikrochimica Acta, 2019, 186, 333.	5.0	47
11	Facile preparation of three-dimensional honeycomb nitrogen-doped carbon materials for supercapacitor applications. Journal of Materials Research, 2019, 34, 1200-1209.	2.6	5
12	The Synthesis of Chitosan Decorated Reduced Graphene Oxideâ€Ferrocene Nanocomposite and its Application in Electrochemical Detection Rhodamine B. Electroanalysis, 2019, 31, 1421-1428.	2.9	6
13	Graphene-ferrocene functionalized cyclodextrin composite with high electrochemical recognition capability for phenylalanine enantiomers. Bioelectrochemistry, 2019, 128, 74-82.	4.6	50
14	A Regular Self-Assembly Micro-Nano Structure Based on Sodium Carboxymethyl Cellulose-Reduced Graphene Oxide (rGO-EDA-CMC) for Electrochemical Chiral Sensor. Journal of the Electrochemical Society, 2019, 166, B173-B182.	2.9	12
15	SiO2@Graphene Composite Materials Obtained through Different Methods Used as Substrate Materials. Silicon, 2019, 11, 1261-1266.	3.3	1
16	Amino acid-inspired electrochemical recognition of phenylalanine enantiomers using amphoteric chitosan. New Journal of Chemistry, 2018, 42, 6817-6823.	2.8	6
17	Electrochemical recognition for tryptophan enantiomers based on 3, 4, 9, 10-perylenetetracarboxylic acid–chitosan composite film. Journal of Solid State Electrochemistry, 2018, 22, 2405-2412.	2.5	14
18	Formation of snowflake-like CdS/reduced graphene oxide composite for efficient photocatalytic organic dye degradation. Journal of Materials Science: Materials in Electronics, 2018, 29, 5944-5953.	2.2	13

Ruibin Guo

#	Article	IF	CITATIONS
19	Amino-functionalized graphene/chitosan composite as an enhanced sensing platform for highly selective detection of Cu2+. Ionics, 2018, 24, 1505-1513.	2.4	20
20	Highly selective tryptophan enantiomers electrochemical chiral sensor based on poly-lysine and functionalized multi-walled carbon nanotubes. Journal of Solid State Electrochemistry, 2018, 22, 973-981.	2.5	16
21	Chiral electrochemical recognition of tryptophan enantiomers at a multi-walled carbon nanotube– <i>N</i> -carboxymethyl chitosan composite-modified glassy carbon electrode. New Journal of Chemistry, 2018, 42, 11635-11641.	2.8	16
22	Advances in the use of functional composites of β-cyclodextrin in electrochemical sensors. Mikrochimica Acta, 2018, 185, 328.	5.0	80
23	The construction of electrochemical chiral interfaces using hydroxypropyl chitosan. RSC Advances, 2017, 7, 8542-8549.	3.6	23
24	A new route to synthesize polyaniline-grafted carboxyl-functionalized graphene composite materials with excellent electrochemical performance. Iranian Polymer Journal (English Edition), 2017, 26, 423-430.	2.4	13
25	Electrochemical enantiorecognition of tryptophan enantiomers based on a multi-walled carbon nanotube–hydroxyethyl chitosan composite film. Analytical Methods, 2017, 9, 5149-5155.	2.7	17
26	A Highly Effective Electrochemical Chiral Sensor of Tryptophan Enantiomers Based on Covalently Functionalize Reduced Graphene Oxide with L-Lysine. Journal of the Electrochemical Society, 2016, 163, B272-B279.	2.9	43
27	The construction and application of chiral electrochemical sensors. Analytical Methods, 2016, 8, 8134-8140.	2.7	24
28	Hierarchically structured nitrogen-doped carbon for advanced supercapacitor electrode materials. Ionics, 2016, 22, 1197-1207.	2.4	15
29	In situ growth and phenyl functionalization of titania nanoparticles coating for solid-phase microextraction of ultraviolet filters in environmental water samples followed by high performance liquid chromatography–UV detection. Analytica Chimica Acta, 2015, 867, 38-46.	5.4	38
30	Synthesis of graphene/Fe3O4/NiO magnetic nanocomposites and its application in photocatalytic degradation the organic pollutants in wastewater. Journal of Porous Materials, 2015, 22, 1245-1253.	2.6	21
31	Synthesis and Luminescence Properties of Rod-Shaped La2O3:Eu3+ Nanocrystalline Using Carbon Nanotubes as Templates. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 988-992.	0.6	1
32	Fabrication of Polyaniline/Graphene/Tb ³⁺ Conductive Composite Material. Materials and Manufacturing Processes, 2015, 30, 335-339.	4.7	11
33	A novel system of galangin–potassium permanganate–polyphosphoric acid for the determination of tryptophan and its chemiluminescence mechanism. Luminescence, 2015, 30, 512-518.	2.9	1
34	Mechanical Properties of Epoxy Resin/PMMA/SiO2 Dental Composites. Journal of Testing and Evaluation, 2015, 43, 80-86.	0.7	1
35	Synthesis of conductive PPy/graphene/rare-earth ions composites and its application in the electrode materials. Journal of Materials Science: Materials in Electronics, 2014, 25, 4714-4719.	2.2	0
36	Molecular dynamics simulation on the interaction between single-walled carbon nanotubes and binaphthyl core-based chiral phenylene dendrimers. Journal of Materials Research, 2014, 29, 2156-2161.	2.6	9

Ruibin Guo

#	Article	IF	CITATIONS
37	Preparation and characterization of conductive and magnetic PPy/Fe ₃ O ₄ /Ag nanocomposites. Polymer Composites, 2014, 35, 450-455.	4.6	4
38	Synthesis of hierarchically structured iron oxide in magnetic field and their hydrophobic property. CrystEngComm, 2013, 15, 6546.	2.6	7
39	Preparation and characterisation of PPy/NanoGs/Fe3O4conductive and magnetic nanocomposites. Journal of Experimental Nanoscience, 2013, 8, 113-120.	2.4	6
40	Molecular dynamics study on the microstructure of dendrimers/graphite composites. Journal of Materials Research, 2012, 27, 1124-1130.	2.6	4
41	Facile synthesis of highly conductive PPy/graphene nanosheet /Gd ³⁺ composites. High Performance Polymers, 2012, 24, 105-111.	1.8	7
42	Preparation and Characterization of Graphene/Europium Oxide Composites. Materials and Manufacturing Processes, 2012, 27, 494-498.	4.7	24
43	Synthesis of Fe ₃ O ₄ Nanoparticles Using Controlled Ammonia Vapor Diffusion under Ultrasonic Irradiation. Industrial & Engineering Chemistry Research, 2011, 50, 3534-3539.	3.7	53
44	Oneâ€step synthesis of highly conductive PPy/graphite nanosheets/Gd ³⁺ composites. Polymer Composites, 2011, 32, 1274-1279.	4.6	4