Paul F Nealey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9043079/publications.pdf

Version: 2024-02-01

218 papers

13,932 citations

56 h-index 25230 113 g-index

220 all docs 220 docs citations

times ranked

220

10215 citing authors

#	Article	IF	CITATIONS
1	Increasing Ionic Conductivity of Poly(ethylene oxide) by Reaction with Metallic Li. Advanced Energy and Sustainability Research, 2022, 3, 2100142.	2.8	15
2	Residual changes and thickness effects in glass-forming polymer thin films after solvent vapor annealing. Polymer, 2022, 238, 124417.	1.8	1
3	Structural Changes during the Conversion Reaction of Tungsten Oxide Electrodes with Tailored, Mesoscale Porosity. ACS Nano, 2022, 16, 5384-5392.	7.3	6
4	A Generalizable Approach to Direct the Selfâ€Assembly of Functional Blueâ€Phase Liquid Crystals. Advanced Functional Materials, 2022, 32, .	7.8	5
5	CO ₂ â€Based Dualâ€Tone Resists for Electron Beam Lithography. Advanced Functional Materials, 2021, 31, 2007417.	7.8	20
6	Role of solvation site segmental dynamics on ion transport in ethylene-oxide based side-chain polymer electrolytes. Journal of Materials Chemistry A, 2021, 9, 9937-9951.	5.2	21
7	Nucleation and growth of blue phase liquid crystals on chemically-patterned surfaces: a surface anchoring assisted blue phase correlation length. Molecular Systems Design and Engineering, 2021, 6, 534-544.	1.7	3
8	Molecular Level Differences in Ionic Solvation and Transport Behavior in Ethylene Oxide-Based Homopolymer and Block Copolymer Electrolytes. Journal of the American Chemical Society, 2021, 143, 3180-3190.	6.6	55
9	Role of Molecular Architecture on Ion Transport in Ethylene oxide-Based Polymer Electrolytes. Macromolecules, 2021, 54, 2266-2276.	2.2	33
10	Electron Beam Lithography: CO ₂ â€Based Dualâ€Tone Resists for Electron Beam Lithography (Adv. Funct. Mater. 13/2021). Advanced Functional Materials, 2021, 31, 2170086.	7.8	1
11	Buried Structure in Block Copolymer Films Revealed by Soft X-ray Reflectivity. ACS Nano, 2021, 15, 9577-9587.	7.3	2
12	Understanding Kinetics of Defect Annihilation in Chemoepitaxy-Directed Self-Assembly. ACS Applied Materials & Self-Assembly. ACS Applie	4.0	4
13	Advanced Materials for Energy-Water Systems: The Central Role of Water/Solid Interfaces in Adsorption, Reactivity, and Transport. Chemical Reviews, 2021, 121, 9450-9501.	23.0	43
14	Mesoscale Confinement Effects and Emergent Quantum Interference in Titania Antidot Thin Films. ACS Nano, 2021, 15, 12935-12944.	7.3	1
15	Enhanced Ion Conductivity through Hydrated, Polyelectrolyte-Grafted Cellulose Nanocrystal Films. Macromolecules, 2021, 54, 6925-6936.	2.2	9
16	Self-Aligned Assembly of a Poly(2-vinylpyridine)-b-Polystyrene-b-Poly(2-vinylpyridine) Triblock Copolymer on Graphene Nanoribbons. ACS Applied Materials & (2021, 13, 41190-41199).	4.0	0
17	Ionic Dopantâ€Induced Ordering Enhances the Thermoelectric Properties of a Polythiopheneâ€Based Block Copolymer. Advanced Functional Materials, 2021, 31, 2106991.	7.8	5
18	Side chain engineering control of mixed conduction in oligoethylene glycol-substituted polythiophenes. Journal of Materials Chemistry A, 2021, 9, 21410-21423.	5.2	25

#	Article	IF	Citations
19	Complex Relationship between Side-Chain Polarity, Conductivity, and Thermal Stability in Molecularly Doped Conjugated Polymers. Chemistry of Materials, 2021, 33, 741-753.	3.2	36
20	Broadband Liquid Crystal Tunable Metasurfaces in the Visible: Liquid Crystal Inhomogeneities Across the Metasurface Parameter Space. ACS Photonics, 2021, 8, 567-575.	3.2	46
21	Ion Specific, Thin Film Confinement Effects on Conductivity in Polymerized Ionic Liquids. Macromolecules, 2021, 54, 10520-10528.	2.2	8
22	Effect of Graft Molecular Weight and Density on the Mechanical Properties of Polystyrene-Grafted Cellulose Nanocrystal Films. Macromolecules, 2021, 54, 10594-10604.	2.2	15
23	Sub-10 nm Feature Sizes of Disordered Polystyrene- <i>block</i> -poly(methyl methacrylate) Copolymer Films Achieved by Ionic Liquid Additives with Selectively Distributed Charge Interactions. ACS Applied Polymer Materials, 2020, 2, 427-436.	2.0	10
24	Confinement and Processing Can Alter the Morphology and Periodicity of Bottlebrush Block Copolymers in Thin Films. ACS Nano, 2020, 14, 17476-17486.	7.3	19
25	Ultimate suppression of thermal transport in amorphous silicon nitride by phononic nanostructure. Science Advances, 2020, 6, .	4.7	15
26	Boundary-directed epitaxy of block copolymers. Nature Communications, 2020, 11, 4151.	5.8	22
27	Stabilizing Dendritic Electrodeposition by Limiting Spatial Dimensions in Nanostructured Electrolytes. ACS Energy Letters, 2020, 5, 2889-2896.	8.8	13
28	Elucidating the Influence of Side-Chain Circular Distribution on the Crack Onset Strain and Hole Mobility of Near-Amorphous Indacenodithiophene Copolymers. Macromolecules, 2020, 53, 7511-7518.	2.2	25
29	Resist-Free Directed Self-Assembly Chemo-Epitaxy Approach for Line/Space Patterning. Nanomaterials, 2020, 10, 2443.	1.9	1
30	Enhanced Reduction of Thermal Conductivity in Amorphous Silicon Nitride-Containing Phononic Crystals Fabricated Using Directed Self-Assembly of Block Copolymers. ACS Nano, 2020, 14, 6980-6989.	7.3	12
31	Three-dimensional superlattice engineering with block copolymer epitaxy. Science Advances, 2020, 6, eaaz0002.	4.7	11
32	Intrinsic Ion Transport Properties of Block Copolymer Electrolytes. ACS Nano, 2020, 14, 8902-8914.	7.3	36
33	Influence of Additives on the Interfacial Width and Line Edge Roughness in Block Copolymer Lithography. Chemistry of Materials, 2020, 32, 2399-2407.	3.2	17
34	Thermal Stability of π-Conjugated <i>n</i> -Ethylene-Glycol-Terminated Quaterthiophene Oligomers: A Computational and Experimental Study. ACS Macro Letters, 2020, 9, 295-300.	2.3	2
35	Understanding Ion Mobility in P2VP/NMP+I– Polymer Electrolytes: A Combined Simulation and Experimental Study. Macromolecules, 2020, 53, 2783-2792.	2.2	12
36	Soft crystal martensites: An in situ resonant soft x-ray scattering study of a liquid crystal martensitic transformation. Science Advances, 2020, 6, eaay5986.	4.7	20

3

#	Article	IF	CITATIONS
37	The Influence of Additives on the Interfacial Width and Line Edge Roughness in Block Copolymer Lithography. Chemistry of Materials, 2020, 32, .	3.2	1
38	Surface anchoring of nematic liquid crystal on swollen polymer brush studied by surface forces measurement. Advances in Colloid and Interface Science, 2019, 272, 101997.	7.0	7
39	Combining double patterning with self-assembled block copolymer lamellae to fabricate 10.5 nm full-pitch line/space patterns. Nanotechnology, 2019, 30, 455302.	1.3	8
40	Defect Annihilation in the Directed Self-Assembly of Block Copolymers in Films with Increasing Thickness. Macromolecules, 2019, 52, 7798-7805.	2.2	10
41	Surface Reconstruction Limited Conductivity in Blockâ€Copolymer Li Battery Electrolytes. Advanced Functional Materials, 2019, 29, 1905977.	7.8	26
42	Ultrathin initiated chemical vapor deposition polymer interfacial energy control for directed self-assembly hole-shrink applications. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 061804.	0.6	3
43	Structure Control of a π-Conjugated Oligothiophene-Based Liquid Crystal for Enhanced Mixed Ion/Electron Transport Characteristics. ACS Nano, 2019, 13, 7665-7675.	7.3	29
44	Role of Defects in Ion Transport in Block Copolymer Electrolytes. Nano Letters, 2019, 19, 4684-4691.	4.5	48
45	Hierarchical Assembly of Plasmonic Nanoparticle Heterodimer Arrays with Tunable Sub-5 nm Nanogaps. Nano Letters, 2019, 19, 4314-4320.	4.5	30
46	Nanothin film conductivity measurements reveal interfacial influence on ion transport in polymer electrolytes. Molecular Systems Design and Engineering, 2019, 4, 597-608.	1.7	16
47	Perfection in Nucleation and Growth of Blue-Phase Single Crystals: Small Free-Energy Required to Self-Assemble at Specific Lattice Orientation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 9487-9495.	4.0	24
48	Influence of Side-Chain Chemistry on Structure and Ionic Conduction Characteristics of Polythiophene Derivatives: A Computational and Experimental Study. Chemistry of Materials, 2019, 31, 1418-1429.	3.2	84
49	lonic conductivity and counterion condensation in nanoconfined polycation and polyanion brushes prepared from block copolymer templates. Molecular Systems Design and Engineering, 2019, 4, 365-378.	1.7	13
50	Sculpted grain boundaries in soft crystals. Science Advances, 2019, 5, eaax9112.	4.7	18
51	Enhanced microphase separation of thin films of low molecular weight block copolymer by the addition of an ionic liquid. Soft Matter, 2019, 15, 9991-9996.	1.2	2
52	Selfâ€Assembly Behavior of an Oligothiopheneâ€Based Conjugated Liquid Crystal and Its Implication for lonic Conductivity Characteristics. Advanced Functional Materials, 2019, 29, 1805220.	7.8	20
53	Sequential Infiltration Synthesis of Al2O3 in Polyethersulfone Membranes. Jom, 2019, 71, 212-223.	0.9	25
54	Orientation control of high-χ triblock copolymer for sub-10Ânm patterning using fluorine-containing polymeric additives. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2019, 18, 1.	1.0	4

#	Article	IF	Citations
55	Kinetic approach to defect reduction in directed self-assembly. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2019, 18, 1.	1.0	6
56	Kinetics of defect annihilation in chemo-epitaxy directed self-assembly., 2019,,.		2
57	lonic Liquids as Additives to Polystyrene- <i>Block</i> -Poly(Methyl Methacrylate) Enabling Directed Self-Assembly of Patterns with Sub-10 nm Features. ACS Applied Materials & Diterfaces, 2018, 10, 16747-16759.	4.0	29
58	Optimizing self-consistent field theory block copolymer models with X-ray metrology. Molecular Systems Design and Engineering, 2018, 3, 376-389.	1.7	13
59	Mechanistic understanding of tungsten oxide in-plane nanostructure growth <i>via</i> sequential infiltration synthesis. Nanoscale, 2018, 10, 3469-3479.	2.8	25
60	Synthesis of CO ₂ -Based Block Copolymers via Chain Transfer Polymerization Using Macroinitiators: Activity, Blocking Efficiency, and Nanostructure. Macromolecules, 2018, 51, 791-800.	2.2	35
61	Ultrathin and Conformal Initiated Chemical-Vapor-Deposited Layers of Systematically Varied Surface Energy for Controlling the Directed Self-Assembly of Block CoPolymers. Langmuir, 2018, 34, 4494-4502.	1.6	19
62	Pathways to Mesoporous Resin/Carbon Thin Films with Alternating Gyroid Morphology. ACS Nano, 2018, 12, 347-358.	7.3	35
63	Nanocrystalline Oligo(ethylene sulfide)- <i>b</i> -ci>b	2.2	7
64	Interrogation of Electrochemical Properties of Polymer Electrolyte Thin Films with Interdigitated Electrodes. Journal of the Electrochemical Society, 2018, 165, H1028-H1039.	1.3	35
65	Defect Annihilation Pathways in Directed Assembly of Lamellar Block Copolymer Thin Films. ACS Nano, 2018, 12, 9974-9981.	7.3	38
66	The Solvent Distribution Effect on the Self-Assembly of Symmetric Triblock Copolymers during Solvent Vapor Annealing. Macromolecules, 2018, 51, 7145-7151.	2.2	20
67	Ellipsometry-based combination of isothermal sorption-desorption measurement and temperature programmed desorption technique: A probe for interaction of thin polymer films with solvent vapor. Review of Scientific Instruments, 2018, 89, 055114.	0.6	3
68	Engineering the anchoring behavior of nematic liquid crystals on a solid surface by varying the density of liquid crystalline polymer brushes. Soft Matter, 2018, 14, 7569-7577.	1.2	19
69	Leveling of Polymer Grating Structures upon Heating: Dimension Dependence on the Nanoscale and the Effect of Antiplasticizers. ACS Applied Materials & Samp; Interfaces, 2018, 10, 27432-27443.	4.0	4
70	Microscale-Resolution Thermal Mapping Using a Flexible Platform of Patterned Quantum Sensors. Nano Letters, 2018, 18, 4684-4690.	4.5	33
71	Directed Self-Assembly of High χ Poly(styrene-b-(lactic acid-alt-glycolic acid)) Block Copolymers on Chemical Patterns via Thermal Annealing. ACS Macro Letters, 2018, 7, 751-756.	2.3	22
72	Janus Membranes via Diffusionâ€Controlled Atomic Layer Deposition. Advanced Materials Interfaces, 2018, 5, 1800658.	1.9	59

#	Article	IF	CITATIONS
73	Engineering the Kinetics of Directed Self-Assembly of Block Copolymers toward Fast and Defect-Free Assembly. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23414-23423.	4.0	22
74	Utilization of metal–polymer interactions for self-aligned directed self-assembly of device relevant features. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2018, 17, 1.	1.0	2
75	Thickness dependence of forming single crystal by liquid-crystalline blue phase on chemically patterned surface. , 2018, , .		2
76	Studying the effects of chemistry and geometry on DSA hole-shrink process in three dimensions. , 2018, , .		1
77	Controlling domain orientation of liquid crystalline block copolymer in thin films through tuning mesogenic chemical structures. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 532-541.	2.4	6
78	Directed Self-Assembly of Polystyrene- <i>b</i> -poly(propylene carbonate) on Chemical Patterns via Thermal Annealing for Next Generation Lithography. Nano Letters, 2017, 17, 1233-1239.	4.5	97
79	Interconnected ionic domains enhance conductivity in microphase separated block copolymer electrolytes. Journal of Materials Chemistry A, 2017, 5, 5619-5629.	5.2	50
80	Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals. Nature Communications, 2017, 8, 15854.	5.8	101
81	Modulating the Kinetics of Nanoparticle Adsorption for Simple and Highâ€Yield Fabrication of Plasmonic Heterostructures as SERS Substrates. ChemPhysChem, 2017, 18, 2114-2122.	1.0	16
82	Characterizing Patterned Block Copolymer Thin Films with Soft X-rays. ACS Applied Materials & Samp; Interfaces, 2017, 9, 31325-31334.	4.0	10
83	Directed Self-Assembly of Colloidal Particles onto Nematic Liquid Crystalline Defects Engineered by Chemically Patterned Surfaces. ACS Nano, 2017, 11, 6492-6501.	7.3	22
84	Sub-10-nm patterning via directed self-assembly of block copolymer films with a vapour-phase deposited topcoat. Nature Nanotechnology, 2017, 12, 575-581.	15.6	155
85	Quantitative Three-Dimensional Characterization of Block Copolymer Directed Self-Assembly on Combined Chemical and Topographical Prepatterned Templates. ACS Nano, 2017, 11, 1307-1319.	7.3	43
86	Spatially-controllable and uniform photochemical transfer printing of block copolymer nanopatterns. Molecular Systems Design and Engineering, 2017, 2, 597-604.	1.7	0
87	Sharp Morphological Transitions from Nanoscale Mixed-Anchoring Patterns in Confined Nematic Liquid Crystals. Langmuir, 2017, 33, 12516-12524.	1.6	14
88	Derivation of Multiple Covarying Material and Process Parameters Using Physics-Based Modeling of X-ray Data. Macromolecules, 2017, 50, 7783-7793.	2.2	26
89	Waterâ€soluble top coats for orientation control of liquid crystalâ€containing block copolymer films. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1569-1574.	2.4	3
90	The Oneâ€Pot Directed Assembly of Cylinderâ€Forming Block Copolymer on Adjacent Chemical Patterns for Bimodal Patterning. Macromolecular Rapid Communications, 2017, 38, 1700285.	2.0	9

#	Article	IF	Citations
91	Mesoscale martensitic transformation in single crystals of topological defects. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10011-10016.	3.3	42
92	Fabrication of Nanoporous Alumina Ultrafiltration Membrane with Tunable Pore Size Using Block Copolymer Templates. Advanced Functional Materials, 2017, 27, 1701756.	7.8	87
93	Long-range spin wave mediated control of defect qubits in nanodiamonds. Npj Quantum Information, 2017, 3, .	2.8	101
94	Advances in directed assembly: a themed collection. Molecular Systems Design and Engineering, 2017, 2, 517-517.	1.7	0
95	Real-Time Atomic Force Microscopy Imaging of Block Copolymer Directed Self Assembly. Nano Letters, 2017, 17, 7717-7723.	4.5	33
96	Ion Conduction in Microphase-Separated Block Copolymer Electrolytes. Electrochemical Society Interface, 2017, 26, 61-67.	0.3	23
97	Design of surface patterns with optimized thermodynamic driving forces for the directed self-assembly of block copolymers in lithographic applications. Molecular Systems Design and Engineering, 2017, 2, 567-580.	1.7	11
98	Ionic Liquid for Directed Self-Assembly of PS- <i>b</i> -PMMA. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2016, 29, 667-670.	0.1	1
99	Three Dimensional Assembly in Directed Self-assembly of Block Copolymers. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2016, 29, 653-657.	0.1	12
100	Directed self-assembly of high-chi block copolymer for nano fabrication of bit patterned media via solvent annealing. Nanotechnology, 2016, 27, 415601.	1.3	19
101	Effect of Stereochemistry on Directed Self-Assembly of Poly(styrene- <i>b</i> lactide) Films on Chemical Patterns. ACS Macro Letters, 2016, 5, 396-401.	2.3	22
102	Directed self-assembly of nematic liquid crystals on chemically patterned surfaces: morphological states and transitions. Soft Matter, 2016, 12, 8595-8605.	1.2	23
103	Characterization of the shape and line-edge roughness of polymer gratings with grazing incidence small-angle X-ray scattering and atomic force microscopy. Journal of Applied Crystallography, 2016, 49, 823-834.	1.9	27
104	Directed Self-Assembly of Triblock Copolymer on Chemical Patterns for Sub-10-nm Nanofabrication <i>via</i>) Solvent Annealing. ACS Nano, 2016, 10, 7855-7865.	7.3	62
105	Directed self-assembly of block copolymer films on atomically-thin graphene chemical patterns. Scientific Reports, 2016, 6, 31407.	1.6	20
106	Directed Selfâ€Assembly of Hierarchical Supramolecular Block Copolymer Thin Films on Chemical Patterns. Advanced Materials Interfaces, 2016, 3, 1600048.	1.9	9
107	Hybrid nanostructures of well-organized arrays of colloidal quantum dots and a self-assembled monolayer of gold nanoparticles for enhanced fluorescence. Nanotechnology, 2016, 27, 285301.	1.3	7
108	Quasiâ€Block Copolymers Based on a General Polymeric Chain Stopper. Chemistry - A European Journal, 2016, 22, 10203-10210.	1.7	7

#	Article	IF	CITATIONS
109	Laser Writing Block Copolymer Self-Assembly on Graphene Light-Absorbing Layer. ACS Nano, 2016, 10, 3435-3442.	7.3	102
110	Plasmon-Mediated Two-Photon Photoluminescence-Detected Circular Dichroism in Gold Nanosphere Assemblies. Journal of Physical Chemistry Letters, 2016, 7, 765-770.	2.1	11
111	Three-Tone Chemical Patterns for Block Copolymer Directed Self-Assembly. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 2704-2712.	4.0	48
112	Directed self-assembly of solvent-vapor-induced non-bulk block copolymer morphologies on nanopatterned substrates. Soft Matter, 2016, 12, 2914-2922.	1.2	20
113	Perpendicularly Aligned, Anion Conducting Nanochannels in Block Copolymer Electrolyte Films. Chemistry of Materials, 2016, 28, 1377-1389.	3.2	45
114	Directed self-assembly of block copolymers on chemical patterns: A platform for nanofabrication. Progress in Polymer Science, 2016, 54-55, 76-127.	11.8	179
115	Nanophotonic Materials: Deterministic Construction of Plasmonic Heterostructures in Well-Organized Arrays for Nanophotonic Materials (Adv. Mater. 45/2015). Advanced Materials, 2015, 27, 7313-7313.	11.1	0
116	The Photopolymer Science and Technology Award. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 5-9.	0.1	1
117	Deterministic Construction of Plasmonic Heterostructures in Wellâ€Organized Arrays for Nanophotonic Materials. Advanced Materials, 2015, 27, 7314-7319.	11.1	31
118	Molecular Transfer Printing of Block Copolymer Patterns over Large Areas with Conformal Layers. Advanced Materials Interfaces, 2015, 2, 1500133.	1.9	12
119	Macrophase Separation of Blends of Diblock Copolymers in Thin Films. Macromolecules, 2015, 48, 3997-4003.	2.2	13
120	Defect mitigation and root cause studies in IMEC's 14nm half-pitch chemo-epitaxy DSA flow. , 2015, , .		4
121	Impact of BCP asymmetry on DSA patterning performance. , 2015, , .		1
122	Nonlinear Chiro-Optical Amplification by Plasmonic Nanolens Arrays Formed via Directed Assembly of Gold Nanoparticles. Nano Letters, 2015, 15, 1836-1842.	4.5	51
123	Simulation of Defect Reduction in Block Copolymer Thin Films by Solvent Annealing. ACS Macro Letters, 2015, 4, 11-15.	2.3	79
124	Characterizing the Three-Dimensional Structure of Block Copolymers <i>via</i> Sequential Infiltration Synthesis and Scanning Transmission Electron Tomography. ACS Nano, 2015, 9, 5333-5347.	7.3	98
125	Grazing-incidence small angle x-ray scattering studies of nanoscale polymer gratings. Proceedings of SPIE, $2015,$	0.8	5
126	Molecular pathways for defect annihilation in directed self-assembly. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14144-14149.	3.3	98

#	Article	IF	Citations
127	Communication: SHG-detected circular dichroism imaging using orthogonal phase-locked laser pulses. Journal of Chemical Physics, 2015, 142, 151101.	1.2	13
128	Metrology of DSA process using TEM tomography. Proceedings of SPIE, 2015, , .	0.8	6
129	Defect mitigation and root cause studies in 14Ânm half-pitch chemo-epitaxy directed self-assembly LiNe flow. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2015, 14, 031204.	1.0	31
130	Self-Assembled Nanoparticle Arrays on Chemical Nanopatterns Prepared Using Block Copolymer Lithography. ACS Macro Letters, 2015, 4, 1356-1361.	2.3	33
131	Defect reduction and defect stability in IMEC's 14nm half-pitch chemo-epitaxy DSA flow. , 2014, , .		30
132	Inspection of directed self-assembly defects. Proceedings of SPIE, 2014, , .	0.8	8
133	Defect Removal in the Course of Directed Self-Assembly is Facilitated in the Vicinity of the Order-Disorder Transition. Physical Review Letters, 2014, 113, 168301.	2.9	97
134	High throughput grating qualification of directed self-assembly patterns using optical metrology. Microelectronic Engineering, 2014, 123, 175-179.	1.1	5
135	Evolutionary Optimization of Directed Self-Assembly of Triblock Copolymers on Chemically Patterned Substrates. ACS Macro Letters, 2014, 3, 747-752.	2.3	64
136	Control of Directed Self-Assembly in Block Polymers by Polymeric Topcoats. Macromolecules, 2014, 47, 3520-3527.	2.2	36
137	Directed Assembly of Lamellae Forming Block Copolymer Thin Films near the Order–Disorder Transition. Nano Letters, 2014, 14, 148-152.	4.5	48
138	Block Copolymer Assembly on Nanoscale Patterns of Polymer Brushes Formed by Electrohydrodynamic Jet Printing. ACS Nano, 2014, 8, 6606-6613.	7.3	52
139	Photochemical Reactions for Replicating and Aligning Block Copolymer Thin Film Patterns. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2014, 27, 435-440.	0.1	5
140	Defect source analysis of directed self-assembly process. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2013, 12, 031112.	1.0	23
141	Synthesis and thinâ€film orientation of poly(styreneâ€ <i>block</i> â€trimethylsilylisoprene). Journal of Polymer Science Part A, 2013, 51, 290-297.	2.5	16
142	Chemical Patterns for Directed Self-Assembly of Lamellae-Forming Block Copolymers with Density Multiplication of Features. Macromolecules, 2013, 46, 1415-1424.	2.2	201
143	Directed Assembly of Block Copolymers in Thin to Thick Films. Macromolecules, 2013, 46, 3915-3921.	2,2	34
144	Light-Activated Replication of Block Copolymer Fingerprint Patterns. Macromolecules, 2013, 46, 4510-4519.	2.2	15

#	Article	IF	CITATIONS
145	Effects of annealing time and temperature on the crystallinity and heat resistance behavior of injectionâ€molded poly(lactic acid). Polymer Engineering and Science, 2013, 53, 580-588.	1.5	152
146	Process sensitivities in exemplary chemo-epitaxy directed self-assembly integration. Proceedings of SPIE, $2013, \ldots$	0.8	9
147	Defect source analysis of directed self-assembly process (DSA of DSA). Proceedings of SPIE, 2013, , .	0.8	25
148	Graphene RF transistors with buried bottom gate. , 2013, , .		2
149	Scale-up of a Chemo-Epitaxy Flow for Feature Multiplication Using Directed Self- Assembly of Block-Copolymers. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 831-839.	0.1	9
150	High Throughput Grating Qualification for Rating Directed Self-Assembly Pattern Performance using Optical Metrology. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 147-152.	0.1	12
151	Topcoat Approaches for Directed Self-Assembly of Strongly Segregating Block Copolymer Thin Films. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 55-58.	0.1	52
152	Fabrication of large-area, high-density Ni nanopillar arrays on GaAs substrates using diblock copolymer lithography and electrodeposition. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 031801.	0.6	5
153	All track directed self-assembly of block copolymers: process flow and origin of defects. Proceedings of SPIE, 2012, , .	0.8	31
154	Fabrication of templates with rectangular bits on circular tracks by combining block copolymer directed self-assembly and nanoimprint lithography. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2012, 11, 031405-1.	1.0	30
155	Geometric Control of Chemically Nano-patterned Substrates for Feature Multiplication Using Directed Self-Assembly of Block Copolymers. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2012, 25, 77-81.	0.1	22
156	Directed Assembly of Non-equilibrium ABA Triblock Copolymer Morphologies on Nanopatterned Substrates. ACS Nano, 2012, 6, 5440-5448.	7.3	50
157	Degree of Perfection and Pattern Uniformity in the Directed Assembly of Cylinder-Forming Block Copolymer on Chemically Patterned Surfaces. Macromolecules, 2012, 45, 159-164.	2.2	22
158	Free Energy of Defects in Ordered Assemblies of Block Copolymer Domains. ACS Macro Letters, 2012, 1, 418-422.	2.3	107
159	Decoupling Bulk Thermodynamics and Wetting Characteristics of Block Copolymer Thin Films. ACS Macro Letters, 2012, 1, 11-14.	2.3	59
160	Size-Dependent Shape Evolution of Patterned Polymer Films Studied in Situ by Phase-Retrieval-Based Small-Angle X-ray Scattering. Macromolecules, 2012, 45, 5798-5805.	2.2	4
161	Nonbulk Complex Structures in Thin Films of Symmetric Block Copolymers on Chemically Nanopatterned Surfaces. Macromolecules, 2012, 45, 3986-3992.	2.2	40

Domain Orientation and Grain Coarsening in Cylinder-Forming Poly(styrene-<i>b</i>-methyl) Tj ETQq0 0 0 rgBT /Overlock 10 Jf 50 62 To 2:2

#	Article	IF	Citations
163	Fabrication of Lithographically Defined Chemically Patterned Polymer Brushes and Mats. Macromolecules, 2011, 44, 1876-1885.	2.2	191
164	Siteâ€Specific Placement of Au Nanoparticles on Chemical Nanopatterns Prepared by Molecular Transfer Printing Using Blockâ€Copolymer Films. Advanced Functional Materials, 2011, 21, 3074-3082.	7.8	30
165	Threeâ€dimensional Directed Assembly of Block Copolymers together with Twoâ€dimensional Square and Rectangular Nanolithography. Advanced Materials, 2011, 23, 3692-3697.	11.1	66
166	Towards an all-track 300 mm process for directed self-assembly. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	0.6	58
167	Cross-sectional Imaging of Block Copolymer Thin Films on Chemically Patterned Surfaces. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2010, 23, 149-154.	0.1	14
168	Directed Assembly of Cylinder-Forming Ternary Blend of Block Copolymer and Their Respective Homopolymers on Chemical Patterns with Density Multiplication of Features. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2010, 23, 297-299.	0.1	3
169	Integration of Density Multiplication in the Formation of Deviceâ€Oriented Structures by Directed Assembly of Block Copolymer–Homopolymer Blends. Advanced Functional Materials, 2010, 20, 1251-1257.	7.8	99
170	Graphoepitaxial Assembly of Symmetric Block Copolymers on Weakly Preferential Substrates. Advanced Materials, 2010, 22, 4325-4329.	11.1	81
171	Practical implementation of order parameter calculation for directed assembly of block copolymer thin films. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 2589-2603.	2.4	13
172	Biophysical Cueing and Vascular Endothelial Cell Behavior. Materials, 2010, 3, 1620-1639.	1.3	47
173	Mechanism and dynamics of block copolymer directed assembly with density multiplication on chemically patterned surfaces. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C6B13-C6B19.	0.6	10
174	Surface Roughening of Polystyrene and Poly(methyl methacrylate) in Ar/O2 Plasma Etching. Polymers, 2010, 2, 649-663.	2.0	66
175	Interpolation in the Directed Assembly of Block Copolymers on Nanopatterned Substrates: Simulation and Experiments. Macromolecules, 2010, 43, 3446-3454.	2.2	131
176	Block Cooligomers: A Generalized Approach to Controlling the Wetting Behavior of Block Copolymer Thin Films. Macromolecules, 2010, 43, 6919-6922.	2.2	25
177	Thickness Dependence of Neutral Parameter Windows for Perpendicularly Oriented Block Copolymer Thin Films. Macromolecules, 2010, 43, 4744-4751.	2.2	58
178	Orientation of Block Copolymer Resists on Interlayer Dielectrics with Tunable Surface Energy. Macromolecules, 2010, 43, 461-466.	2.2	45
179	Remediation of Line Edge Roughness in Chemical Nanopatterns by the Directed Assembly of Overlying Block Copolymer Films. Macromolecules, 2010, 43, 2334-2342.	2.2	81
180	Simulations of theoretically informed coarse grain models of polymeric systems. Faraday Discussions, 2010, 144, 111-125.	1.6	53

#	Article	IF	CITATIONS
181	Mechanical properties of antiplasticized polymer nanostructures. Soft Matter, 2010, 6, 2475.	1.2	63
182	Oneâ€Step Directâ€Patterning Template Utilizing Selfâ€Assembly of POSSâ€Containing Block Copolymers. Advanced Materials, 2009, 21, 4334-4338.	11,1	168
183	MonteÂCarlo Simulation of Coarse Grain Polymeric Systems. Physical Review Letters, 2009, 102, 197801.	2.9	126
184	Theoretically informed coarse grain simulations of block copolymer melts: method and applications. Soft Matter, 2009, 5, 4858.	1.2	91
185	Perpendicular Orientation of Domains in Cylinder-Forming Block Copolymer Thick Films by Controlled Interfacial Interactions. Macromolecules, 2009, 42, 4896-4901.	2.2	177
186	Preparation of Neutral Wetting Brushes for Block Copolymer Films from Homopolymer Blends. Advanced Materials, 2008, 20, 3054-3060.	11.1	74
187	Surfactantâ€Assisted Orientation of Thin Diblock Copolymer Films. Advanced Materials, 2008, 20, 3643-3648.	11.1	57
188	Effect of Composition of Substrate-Modifying Random Copolymers on the Orientation of Symmetric and Asymmetric Diblock Copolymer Domains. Macromolecules, 2008, 41, 9090-9097.	2.2	228
189	Monte Carlo Simulations of a Coarse Grain Model for Block Copolymers and Nanocomposites. Macromolecules, 2008, 41, 4989-5001.	2.2	198
190	Density Multiplication and Improved Lithography by Directed Block Copolymer Assembly. Science, 2008, 321, 936-939.	6.0	1,099
191	Generalization of the Use of Random Copolymers To Control the Wetting Behavior of Block Copolymer Films. Macromolecules, 2008, 41, 9098-9103.	2.2	110
192	Rapid Directed Assembly of Block Copolymer Films at Elevated Temperatures. Macromolecules, 2008, 41, 2759-2761.	2.2	145
193	Characterization of Cylinder-Forming Block Copolymers Directed to Assemble on Spotted Chemical Patterns. Macromolecules, 2008, 41, 9118-9123.	2.2	36
194	EQUILIBRATION OF BLOCK COPOLYMER FILMS ON CHEMICALLY PATTERNED SURFACES. Series in Sof Condensed Matter, 2008, , 27-52.	0.1	1
195	Selective GaAs Quantum Dot Array Growth using Dielectric and AlGaAs Masks Pattern-Transferred from Diblock Copolymer. Materials Research Society Symposia Proceedings, 2007, 1014, 1.	0.1	0
196	Directed Self-Assembly of Block Copolymers for Nanolithography: Fabrication of Isolated Features and Essential Integrated Circuit Geometries. ACS Nano, 2007, 1, 168-175.	7.3	424
197	Measurement of the x-ray dose-dependent glass transition temperature of structured polymer films by x-ray diffraction. Journal of Applied Physics, 2007, 102, 013528.	1.1	17
198	Side-Chain-Grafted Random Copolymer Brushes as Neutral Surfaces for Controlling the Orientation of Block Copolymer Microdomains in Thin Films. Langmuir, 2006, 22, 7855-7860.	1.6	142

#	Article	IF	Citations
199	Defect Structure in Thin Films of a Lamellar Block Copolymer Self-Assembled on Neutral Homogeneous and Chemically Nanopatterned Surfaces. Macromolecules, 2006, 39, 5466-5470.	2.2	66
200	Directed assembly of copolymer materials on patterned substrates: Balance of simple symmetries in complex structures. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2589-2604.	2.4	19
201	Block copolymers and conventional lithography. Materials Today, 2006, 9, 20-29.	8.3	769
202	Morphology of multi-component polymer systems: single chain in mean field simulation studies. Soft Matter, 2006, 2, 573-583.	1.2	134
203	Mechanism and kinetics of ordering in diblock copolymer thin films on chemically nanopatterned substrates. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3444-3459.	2.4	89
204	Directed Assembly of Block Copolymer Blends into Nonregular Device-Oriented Structures. Science, 2005, 308, 1442-1446.	6.0	912
205	Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature, 2003, 424, 411-414.	13.7	1,594
206	Cell behavior on lithographically defined nanostructured substrates. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 683.	1.6	57
207	Effect of photoacid generator concentration on sensitivity, photoacid generation, and deprotection of chemically amplified resists. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 2413.	1.6	6
208	The Multifunctional Role of Base Quenchers in Chemically Amplified Photoresists. Chemistry of Materials, 2002, 14, 4192-4201.	3.2	21
209	Extraordinary elevation of the glass transition temperature of thin polymer films grafted to silicon oxide substrates. Journal of Chemical Physics, 2001, 115, 9982-9990.	1.2	138
210	Dependence of the Glass Transition Temperature of Polymer Films on Interfacial Energy and Thickness. Macromolecules, 2001, 34, 5627-5634.	2.2	464
211	Monte Carlo Simulations of Asymmetric Diblock Copolymer Thin Films Confined between Two Homogeneous Surfaces. Macromolecules, 2001, 34, 3458-3470.	2.2	192
212	Lateral Force Microscopy Study of the Frictional Behavior of Self-Assembled Monolayers of Octadecyltrichlorosilane on Silicon/Silicon Dioxide Immersed in n-Alcohols. Langmuir, 2001, 17, 720-732.	1.6	59
213	The effect of chain density on the frictional behavior of surfaces modified with alkylsiloxanes and immersed in n-alcohols. Journal of Chemical Physics, 2001, 114, 2802-2811.	1.2	31
214	Adhesion and proliferation of corneal epithelial cells on self-assembled monolayers. Journal of Biomedical Materials Research Part B, 2000, 52, 261-269.	3.0	63
215	Outgassing of photoresists in extreme ultraviolet lithography. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 3402.	1.6	20
216	Thermal Probe Measurements of the Glass Transition Temperature for Ultrathin Polymer Films as a Function of Thickness. Macromolecules, 2000, 33, 6439-6447.	2.2	331

Paul F Nealey

#	Article	IF	CITATIONS
217	Wetting Behavior of Block Copolymers on Self-Assembled Films of Alkylchlorosiloxanes:Â Effect of Grafting Density. Langmuir, 2000, 16, 9620-9626.	1.6	76
218	Cellular Behavior on Basement Membrane Inspired Topographically Patterned Synthetic Matrices. , 0, , 297-319.		2