Jiun-Haw Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9042574/publications.pdf Version: 2024-02-01

LUIN-HANALEE

#	Article	IF	CITATIONS
1	Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light: Science and Applications, 2018, 7, 17168-17168.	16.6	667
2	Blue organic light-emitting diodes: current status, challenges, and future outlook. Journal of Materials Chemistry C, 2019, 7, 5874-5888.	5.5	412
3	Broadband antireflection film with moth-eye-like structure for flexible display applications. Optica, 2017, 4, 678.	9.3	122
4	Mixed host organic light-emitting devices with low driving voltage and long lifetime. Applied Physics Letters, 2005, 86, 103506.	3.3	105
5	High Photoelectric Conversion Efficiency of Metal Phthalocyanine/Fullerene Heterojunction Photovoltaic Device. International Journal of Molecular Sciences, 2011, 12, 476-505.	4.1	82
6	Orthogonally Substituted Benzimidazole-Carbazole Benzene As Universal Hosts for Phosphorescent Organic Light-Emitting Diodes. Organic Letters, 2016, 18, 672-675.	4.6	78
7	High efficiency and long lifetime OLED based on a metal-doped electron transport layer. Chemical Physics Letters, 2005, 416, 234-237.	2.6	76
8	Recombination zone in mixed-host organic light-emitting devices. Applied Physics Letters, 2006, 89, 163511.	3.3	70
9	The Unusual Electrochemical and Photophysical Behavior of 2,2â€ [~] -Bis(1,3,4-oxadiazol-2-yl)biphenyls, Effective Electron Transport Hosts for Phosphorescent Organic Light Emitting Diodes. Organic Letters, 2007, 9, 235-238.	4.6	64
10	Emitting layer thickness dependence of color stability in phosphorescent organic light-emitting devices. Organic Electronics, 2010, 11, 1500-1506.	2.6	63
11	Emission Characteristics of Organic Light-Emitting Diodes and Organic Thin-Films with Planar and Corrugated Structures. International Journal of Molecular Sciences, 2010, 11, 1527-1545.	4.1	63
12	High ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting device. Optics Express, 2005, 13, 9431.	3.4	61
13	Charge carrier mobility of mixed-layer organic light-emitting diodes. Applied Physics Letters, 2007, 91, 142106.	3.3	60
14	Effects of cathode buffer layers on the efficiency of bulk-heterojunction solar cells. Applied Physics Letters, 2010, 96, .	3.3	58
15	Efficiency improvement and image quality of organic light-emitting display by attaching cylindrical microlens arrays. Optics Express, 2008, 16, 21184.	3.4	57
16	6-N,N-Diphenylaminobenzofuran-Derived Pyran Containing Fluorescent Dyes:  A New Class of High-Brightness Red-Light-Emitting Dopants for OLED. Organic Letters, 2006, 8, 2623-2626.	4.6	55
17	Blue mixed host organic light emitting devices. Thin Solid Films, 2004, 453-454, 312-315.	1.8	51
18	New D–A–A-Configured Small-Molecule Donors for High-Efficiency Vacuum-Processed Organic Photovoltaics under Ambient Light. ACS Applied Materials & Interfaces, 2019, 11, 8337-8349.	8.0	50

#	Article	IF	CITATIONS
19	In situ Electrical Characterization of the Thickness Dependence of Organic Field-Effect Transistors with 1â^20 Molecular Monolayer of Pentacene. ACS Applied Materials & Interfaces, 2010, 2, 2282-2288.	8.0	48
20	Efficient Triplet–Triplet Annihilation Upconversion in an Electroluminescence Device with a Fluorescent Sensitizer and a Tripletâ€Diffusion Singletâ€Blocking Layer. Advanced Materials, 2018, 30, e1804850.	21.0	47
21	Improvement of the outcoupling efficiency of an organic light-emitting device by attaching microstructured films. Optics Communications, 2007, 275, 464-469.	2.1	45
22	Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array. Journal of Optics, 2008, 10, 055302.	1.5	44
23	Analysis and optimization on the angular color shift of RGB OLED displays. Optics Express, 2017, 25, 33629.	3.4	44
24	Enhancement and tunability of active plasmonic by multilayer grating coupled emission. Optics Express, 2007, 15, 11608.	3.4	42
25	Blue phosphorescent organic light-emitting device with double emitting layer. Applied Physics Letters, 2009, 94, 223301.	3.3	41
26	White organic light-emitting devices with ultra-high color stability over wide luminance range. Organic Electronics, 2011, 12, 547-555.	2.6	41
27	Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device. Applied Physics Letters, 2007, 91, 083114.	3.3	40
28	Enhanced Charge Separation by Sieve‣ayer Mediation in Highâ€Efficiency Inorganicâ€Organic Solar Cells. Advanced Materials, 2009, 21, 759-763.	21.0	39
29	Open-circuit voltage and efficiency improvement of subphthalocyanine-based organic photovoltaic device through deposition rate control. Solar Energy Materials and Solar Cells, 2012, 103, 69-75.	6.2	39
30	Exciplex-Sensitized Triplet–Triplet Annihilation in Heterojunction Organic Thin-Film. ACS Applied Materials & Interfaces, 2017, 9, 10963-10970.	8.0	39
31	High contrast ratio organic light-emitting devices based on CuPC as electron transport material. Synthetic Metals, 2004, 144, 279-283.	3.9	37
32	4-Hydroxy-8-methyl-1,5-naphthyridine aluminium chelate: a morphologically stable and efficient exciton-blocking material for organic photovoltaics with prolonged lifetime. Journal of Materials Chemistry, 2010, 20, 7800.	6.7	37
33	Synthesis and Properties of Oxygen-Linked N-Phenylcarbazole Dendrimers. Macromolecules, 2012, 45, 751-765.	4.8	37
34	Novel Ambipolar Orthogonal Donor–Acceptor Host for Blue Organic Light Emitting Diodes. Organic Letters, 2013, 15, 4694-4697.	4.6	37
35	Construction of Highly Efficient Carbazol-9-yl-Substituted Benzimidazole Bipolar Hosts for Blue Phosphorescent Light-Emitting Diodes: Isomer and Device Performance Relationships. ACS Applied Materials & Interfaces, 2018, 10, 42723-42732.	8.0	37
36	High-Efficiency Fluorescent Blue Organic Light-Emitting Device with Balanced Carrier Transport. Journal of the Electrochemical Society, 2007, 154, J226.	2.9	36

#	Article	IF	CITATIONS
37	Strength, stiffness, and microstructure of Cu(In,Ga)Se2 thin films deposited via sputtering and co-evaporation. Applied Physics Letters, 2014, 105, 011907.	3.3	35
38	Dynamics of molecular excitons near a semiconductor surface studied by fluorescence quenching of polycrystalline tetracene on silicon. Chemical Physics Letters, 2014, 601, 33-38.	2.6	35
39	Dopant effects in phosphorescent white organic light-emitting device with double-emitting layer. Organic Electronics, 2011, 12, 756-765.	2.6	34
40	Chloroboron subphthalocyanine/C60 planar heterojunction organic solar cell with N,N-dicarbazolyl-3,5-benzene blocking layer. Solar Energy Materials and Solar Cells, 2014, 122, 264-270.	6.2	33
41	All non-dopant red–green–blue composing white organic light-emitting diodes. Organic Electronics, 2006, 7, 137-143.	2.6	31
42	Simple Molecular-Engineering Approach for Enhancing Orientation and Outcoupling Efficiency of Thermally Activated Delayed Fluorescent Emitters without Red-Shifting Emission. ACS Applied Materials & Interfaces, 2018, 10, 43842-43849.	8.0	30
43	Emitting-layer design of white organic light-emitting devices with single-host material. Journal of Applied Physics, 2009, 106, 024503.	2.5	29
44	Directional photoluminescence enhancement of organic emitters via surface plasmon coupling. Applied Physics Letters, 2009, 94, .	3.3	28
45	Carrier Transport and Recombination Mechanism in Blue Phosphorescent Organic Light-Emitting Diode with Hosts Consisting of Cabazole- and Triazole-Moiety. Scientific Reports, 2019, 9, 3654.	3.3	28
46	High <i>K</i> Nanophase Zinc Oxide on Biomimetic Silicon Nanotip Array as Supercapacitors. Nano Letters, 2013, 13, 1422-1428.	9.1	27
47	1,3,4-Oxadiazole Containing Silanes as Novel Hosts for Blue Phosphorescent Organic Light Emitting Diodes. Organic Letters, 2012, 14, 4986-4989.	4.6	26
48	An extended ï€-backbone for highly efficient near-infrared thermally activated delayed fluorescence with enhanced horizontal molecular orientation. Materials Horizons, 2022, 9, 772-779.	12.2	26
49	Oxadiazole host for a phosphorescent organic light-emitting device. Journal of Applied Physics, 2011, 109, .	2.5	25
50	Electromagnetic modeling of organic light-emitting devices. Journal of Lightwave Technology, 2006, 24, 2450-2457.	4.6	24
51	Color gamut variation of LED-lit LCD at different module temperatures. Optics Communications, 2010, 283, 373-378.	2.1	22
52	Synthesis and Performance in OLEDs of Selenium-Containing Phosphorescent Emitters with Red Emission Color Deeper Than the Corresponding NTSC Standard. Inorganic Chemistry, 2019, 58, 10174-10183.	4.0	22
53	Operation lifetimes of organic light-emitting devices with different layer structures. Chemical Physics Letters, 2005, 402, 335-339.	2.6	21
54	Driving voltage reduction in white organic light-emitting devices from selectively doping in ambipolar blue-emitting layer. Journal of Applied Physics, 2007, 102, .	2.5	21

#	Article	IF	CITATIONS
55	Efficiency improvement and spectral shift of an organic light-emitting device with a square-based microlens array. Optics Communications, 2008, 281, 5625-5632.	2.1	21
56	Enhancing performance of planar molecule-based organic light-emitting diodes through deposition-rate optimization: Role of molecular packing. Chemical Physics Letters, 2009, 474, 207-211.	2.6	21
57	Optical and electrical characteristics of Ag-doped perylene diimide derivative. Applied Physics Letters, 2009, 94, 013307.	3.3	21
58	High-Performance Hole-Transport Polyurethanes for Light-Emitting Diodes Applications. Chemistry of Materials, 2006, 18, 4121-4129.	6.7	20
59	Suppressing series resistance in organic solar cells by oxygen plasma treatment. Applied Physics Letters, 2008, 92, 233302.	3.3	20
60	Fast-Response Blue-Phase Liquid Crystal for Color-Sequential Projection Displays. Journal of Display Technology, 2012, 8, 352-356.	1.2	20
61	Enhancing efficiency with fluorinated interlayers in small molecule organic solar cells. Journal of Materials Chemistry, 2012, 22, 22899.	6.7	20
62	Methoxy- and tert-butyl-substituted meta-bis(N-carbazolyl)phenylenes as hosts for organic light-emitting diodes. Organic Electronics, 2019, 73, 317-326.	2.6	20
63	Radiation Simulations of Top-Emitting Organic Light-Emitting Devices With Two- and Three-Microcavity Structures. Journal of Display Technology, 2006, 2, 130-137.	1.2	19
64	Probing recombination-rate distribution in organic light-emitting devices with mixed-emitter structure. Chemical Physics Letters, 2006, 427, 305-309.	2.6	19
65	Phosphorescent organic light-emitting device with an ambipolar oxadiazole host. Applied Physics Letters, 2007, 90, 243501.	3.3	19
66	Low reflection and photo-sensitive organic light-emitting device with perylene diimide and double-metal structure. Thin Solid Films, 2009, 517, 3712-3716.	1.8	19
67	Modification of silver anode and cathode for a top-illuminated organic photovoltaic device. Journal Physics D: Applied Physics, 2010, 43, 395101.	2.8	18
68	High efficiency quantum dot and organic LEDs with a back-cavity and a high index substrate. Journal Physics D: Applied Physics, 2016, 49, 145103.	2.8	18
69	Easy Access to NO ₂ â€Containing Donor–Acceptor–Acceptor Electron Donors for High Efficiency Smallâ€Molecule Organic Solar Cells. ChemSusChem, 2016, 9, 1433-1441.	6.8	18
70	Roughness characterization of silver oxide anodes for use in efficient top-illuminated organic solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 2606-2609.	6.2	16
71	Exciton dynamics in heterojunction thin-film devices based on exciplex-sensitized triplet–triplet annihilation. Physical Chemistry Chemical Physics, 2018, 20, 27449-27455.	2.8	16
72	Comparison of short and long wavelength absorption electron donor materials in C60-based planar heterojunction organic photovoltaics. Organic Electronics, 2012, 13, 2118-2129.	2.6	15

#	Article	IF	CITATIONS
73	Revealing local, enhanced optical field characteristics of Au nanoparticle arrays with 10 nm gap using scattering-type scanning near-field optical microscopy. Physical Chemistry Chemical Physics, 2013, 15, 4275.	2.8	15
74	Efficient Solid-State triplet-triplet annihilation up-conversion electroluminescence device by incorporating intermolecular intersystem-crossing dark sensitizer. Chemical Engineering Journal, 2022, 427, 130889.	12.7	15
75	Semiconductor circular ring lasers fabricated with the cryo-etching technique. IEEE Photonics Technology Letters, 1998, 10, 751-753.	2.5	13
76	Quasi-static capacitance–voltage characterizations of carrier accumulation and depletion phenomena in pentacene thin film transistors. Solid-State Electronics, 2008, 52, 269-274.	1.4	13
77	Emitter apodization dependent angular luminance enhancement of microlens-array film attached organic light-emitting devices. Optics Express, 2010, 18, 3238.	3.4	13
78	Electrical and optical characteristics of phosphorescent organic light-emitting device with thin-codoped layer insertion. Organic Electronics, 2015, 24, 182-187.	2.6	13
79	Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation. Acta Materialia, 2016, 106, 171-181.	7.9	13
80	Bistriazoles with a Biphenyl Core Derivative as an Electron-Favorable Bipolar Host of Efficient Blue Phosphorescent Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 49895-49904.	8.0	13
81	Deep Blue Fluorescent Material with an Extremely High Ratio of Horizontal Orientation to Enhance Light Outcoupling Efficiency (44%) and External Quantum Efficiency in Doped and Non-Doped Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 34605-34615.	8.0	13
82	Optimizing hole-injection in organic electroluminescent devices by modifying CuPc/NPB interface. Synthetic Metals, 2011, 161, 1828-1831.	3.9	12
83	Networking hole and electron hopping paths by Y-shaped host molecules: promoting blue phosphorescent organic light emitting diodes. Journal of Materials Chemistry C, 2017, 5, 3600-3608.	5.5	12
84	Control of π–π stacking in carbazole-benzimidazoã€^1,2- <i>f</i> 〉phenanthridines: the design of electron-transporting bipolar hosts for phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 3571-3579.	5.5	12
85	Longâ€Distance Triplet Diffusion and Wellâ€Packing Hosts with Ultralow Dopant Concentration for Achieving Highâ€Efficiency TADF OLED. Advanced Optical Materials, 2021, 9, 2100857.	7.3	12
86	Distinct Routes of Singlet Fission and Triplet Fusion: A Fluorescence Kinetic Study of Rubrene. Journal of Physical Chemistry C, 2019, 123, 3279-3284.	3.1	11
87	Exciplex-forming derivatives of 2,7-di-tert-butyl-9,9-dimethylacridan and benzotrifluoride for efficient OLEDs. Organic Electronics, 2020, 78, 105576.	2.6	11
88	Nonlinear switching in an all-semiconductor-optical-amplifier loop device. IEEE Photonics Technology Letters, 1999, 11, 236-238.	2.5	10
89	Absorptive and conductive cavity cathode with silver nanoparticles for low-reflection organic light-emitting devices. Journal Physics D: Applied Physics, 2011, 44, 095102.	2.8	10
90	A new anodic buffer layer material for non-mixed planar heterojunction chloroboron subphthalocyanine organic photovoltaic achieving 96% internal quantum efficiency. Solar Energy Materials and Solar Cells, 2015, 137, 138-145.	6.2	10

#	Article	IF	CITATIONS
91	New bipolar host materials for high power efficiency green thermally activated delayed fluorescence OLEDs. Chemical Engineering Journal, 2022, 442, 136292.	12.7	9
92	Reverse-Mode Polymer-Stabilized Dual-Frequency Cholesteric Texture Cell for Dual Mode Operations. Journal of Display Technology, 2012, 8, 663-668.	1.2	8
93	Enhancement in open circuit voltage of organic photovoltaic devices through control of deposition rate of donor material. Solar Energy Materials and Solar Cells, 2013, 109, 280-287.	6.2	8
94	Tandem Organic Light-Emitting Diode and Organic Photovoltaic Device Inside Polymer Dispersed Liquid Crystal Cell. Journal of Display Technology, 2013, 9, 787-793.	1.2	8
95	Modeling of carrier transport in organic light emitting diode with random dopant effects by two-dimensional simulation. Optics Express, 2017, 25, 25492.	3.4	8
96	P-108: Positive Aging Mechanisms for High-efficiency Blue Quantum Dot Light-emitting Diodes. Digest of Technical Papers SID International Symposium, 2018, 49, 1622-1624.	0.3	8
97	Nonlinear switching behaviours in a compact all-semiconductor optical-amplifier Sagnac interferometer device. IEEE Journal of Quantum Electronics, 1999, 35, 1469-1477.	1.9	7
98	Shape-controlled microlens arrays fabricated by diffuser lithography. Microelectronic Engineering, 2010, 87, 1420-1423.	2.4	7
99	High Open-Circuit Voltage Planar Heterojunction Organic Photovoltaics Exhibiting Red Electroluminescence. Journal of the Electrochemical Society, 2011, 159, H191-H194.	2.9	7
100	Organic-based plasmonic emitters for sensing applications. Applied Optics, 2013, 52, 1383.	1.8	7
101	P-161: 89.3% Lifetime Elongation of Blue TTA-OLED with Assistant Host. Digest of Technical Papers SID International Symposium, 2016, 47, 1727-1729.	0.3	7
102	Effect of trapped electrons on the transient current density and luminance of organic light-emitting diode. Journal Physics D: Applied Physics, 2018, 51, 144003.	2.8	7
103	Oxygen sensing and OLED applications of di- <i>tert</i> -butyl-dimethylacridinyl disubstituted oxygafluorene exhibiting long-lived deep-blue delayed fluorescence. Journal of Materials Chemistry C, 2020, 8, 9632-9638.	5.5	7
104	Tetraphenyl ornamented carbazolyl disubstituted diphenyl sulfone as bipolar TADF host for highly efficient OLEDs with low efficiency roll-offs. Dyes and Pigments, 2021, 194, 109573.	3.7	7
105	All-optical switching behaviors in an all-semiconductor nonlinear loop device. Journal of the Optical Society of America B: Optical Physics, 2001, 18, 1334.	2.1	6
106	Improving the Performance of Transparent PLEDs with LiFâ^•Agâ^•ITO Cathode. Electrochemical and Solid-State Letters, 2007, 10, J120.	2.2	6
107	Transflective device with a transparent organic lightâ€emitting diode and a reflective liquidâ€crystal device. Journal of the Society for Information Display, 2009, 17, 1009-1013.	2.1	6
108	Morphological Control of the Electrochemically Deposited Poly(4-vinyltriphenylamines) (PVTPAs). Langmuir, 2010, 26, 5147-5152.	3.5	6

#	Article	IF	CITATIONS
109	Enhancement and Saturation Phenomena on Luminous Current and Power Efficiencies of Organic Light-Emitting Devices by Attaching Microlens Array Films. Journal of Display Technology, 2011, 7, 242-249.	1.2	6
110	Emitting layer design of a white organic light-emitting device. Current Applied Physics, 2011, 11, S183-S185.	2.4	6
111	Increase of current density and luminance in organic light-emitting diode with reverse bias driving. Organic Electronics, 2017, 48, 330-335.	2.6	6
112	Analysis of the triplet exciton transfer mechanism at the heterojunctions of organic light-emitting diodes. Journal Physics D: Applied Physics, 2020, 53, 345501.	2.8	6
113	A deep-dyeing strategy for ultra-stable, brightly luminescent perovskite-polymer composites. Journal of Materials Chemistry C, 2021, 9, 3396-3402.	5.5	6
114	Room-temperature corrugated indium zinc oxide anode to achieve high-efficiency blue phosphorescent organic light-emitting diodes. Organic Electronics, 2021, 96, 106237.	2.6	6
115	Lifetime elongation of quantum-dot light-emitting diodes by inhibiting the degradation of hole transport layer. RSC Advances, 2021, 11, 20884-20891.	3.6	6
116	Revealing the mechanism of carrier transport in host-guest systems of organic materials with a modified Poisson and drift-diffusion solver. Physical Review Materials, 2020, 4, .	2.4	6
117	Luminance and image quality analysis of an organic electroluminescent panel with a patterned microlens array attachment. Journal of Optics (United Kingdom), 2010, 12, 085502.	2.2	5
118	Stamped Self-Assembled Monolayers on Electrode for Connecting Organic Light-Emitting Diode and Organic Photovoltaic Device. Journal of Display Technology, 2011, 7, 229-234.	1.2	5
119	Deviceâ€dependent angular luminance enhancement and optical responses of organic lightâ€emitting devices with a microlensâ€array film. Journal of the Society for Information Display, 2011, 19, 21-28.	2.1	5
120	A Turbidity Test Based Centrifugal Microfluidics Diagnostic System for Simultaneous Detection of HBV, HCV, and CMV. Advances in Materials Science and Engineering, 2015, 2015, 1-8.	1.8	5
121	Performance improvement of blue quantum dot light-emitting diodes by facilitating electron transportation and suppressing electroplex emission. Chemical Engineering Journal, 2021, 417, 127983.	12.7	5
122	67.1:Invited Paper: Hybrid Transflective Displays using Vertically Integrated Transparent OLED and Reflective LCD. Digest of Technical Papers SID International Symposium, 2007, 38, 1810-1812.	0.3	4
123	Tuning open-circuit voltage in organic solar cells by magnesium modified Alq3. Journal of Applied Physics, 2011, 110, 083104.	2.5	4
124	Pâ€131: Fully Integration of Transflective Hybrid Device Consisting of PSCT and Inâ€cell OLED. Digest of Technical Papers SID International Symposium, 2011, 42, 1602-1605.	0.3	4
125	Tuning energy levels in magnesium modified Alq3. Journal of Applied Physics, 2011, 109, 083541.	2.5	4
126	Fabrication of an organic light-emitting diode inside a liquid crystal display. Thin Solid Films, 2013, 545, 471-475.	1.8	4

#	Article	IF	CITATIONS
127	10-1: Invited Paper : OLED Lifetime Improvement with Exciplex Sensitized Triplet-Triplet Annihilation. Digest of Technical Papers SID International Symposium, 2017, 48, 112-114.	0.3	4
128	Thickness-Dependent Exciton Dynamics in Thermally Evaporated Rubrene Thin Films. Journal of Physical Chemistry C, 2020, 124, 25729-25737.	3.1	4
129	Donor disubstituted trifluoromethyl benzenes for various electroluminescent devices. Dyes and Pigments, 2022, 198, 109956.	3.7	4
130	7.2: Tandem OLED and Reflective LCD with a Microlens Array. Digest of Technical Papers SID International Symposium, 2006, 37, 68.	0.3	3
131	Partitioning pixel of organic light-emitting devices with center-hollowed microlens-array films for efficiency enhancement. Optics Express, 2010, 18, 18685.	3.4	3
132	22.4: Multiâ€stable LCD with Dualâ€frequency Reverseâ€mode Polymer Stabilized Cholesteric Texture. Digest of Technical Papers SID International Symposium, 2013, 44, 264-266.	0.3	3
133	The Effects of Fluorine-Contained Molecules on Improving the Polymer Solar Cell by Curing the Anomalous S-Shaped I–V Curve. ACS Applied Materials & Interfaces, 2015, 7, 6683-6689.	8.0	3
134	Colour stability of Blue–Green and white phosphorescent organic light-emitting diode employing a 9-(2-(4,5-diphenyl-4H-1,2,4-triazol-3-yl)phenyl)-9H-carbazole host. Dyes and Pigments, 2017, 141, 463-469.	3.7	3
135	Pâ€120: Degradation Mechanism and Lifetime Improvement of Blue Quantumâ€Dot Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2019, 50, 1700-1701.	0.3	3
136	New carbolineâ€based donors for green exciplexâ€forming systems. Journal of the Chinese Chemical Society, 2021, 68, 482-490.	1.4	3
137	Why triage materials with low luminescence quantum efficiency: the use of 35Cbz4BzCN as a universal host for organic light emitting diodes through effective triplet energy transfer. Journal of Materials Chemistry C, 2021, 9, 2381-2391.	5.5	3
138	Numerical study on a compact all-semiconductor-optical-amplifier Sagnac interferometer device. Optical and Quantum Electronics, 2000, 32, 585-608.	3.3	2
139	Numerical simulation on pulsed operation of an all-semiconductor optical amplifier nonlinear loop device. Journal of Lightwave Technology, 2001, 19, 1768-1776.	4.6	2
140	Luminance Enhancement and Blur Effect of Microlens Array Film Attachment on Organic Light-Emitting Device. , 2006, , .		2
141	Pâ€104: Storage Lifetime of a Hybrid Transflective Display Using OLED and Polarizerâ€Free RLCD. Digest of Technical Papers SID International Symposium, 2008, 39, 1583-1585.	0.3	2
142	P-178: Semi-transparent Tandem Device Comprising Organic Light-emitting Diodes and Organic Solar Cell. Digest of Technical Papers SID International Symposium, 2011, 42, 1767-1769.	0.3	2
143	Optical effects of shadow masks on short circuit current of organic photovoltaic devices. Physical Chemistry Chemical Physics, 2012, 14, 3837.	2.8	2
144	28.3: Flexible Substrate with Low Reflection, Low Haze, Selfâ€cleaning, and High Hardness by Nanoâ€structured Hard Coating and Surface Treatment. Digest of Technical Papers SID International Symposium, 2014, 45, 371-373.	0.3	2

#	Article	IF	CITATIONS
145	22.3: CbzTAZ Hosts in Blue Organic Light Emitting Devices Perform a High Current Efficiency more than 50 cd/A. Digest of Technical Papers SID International Symposium, 2015, 46, 320-322.	0.3	2
146	33â€3: Systematic Optimization for Achieving Indistinguishable Color Shift of RGB OLED Displays. Digest of Technical Papers SID International Symposium, 2018, 49, 418-421.	0.3	2
147	Harnessing the Inductive Effect To Design New Donor–Acceptor–Acceptorâ€2-Configured Small-Molecule Donors for Vacuum-Processed Organic Photovoltaics. Energy & Fuels, 0, , .	5.1	2
148	Pâ€88: Efficiency Improvement of Topâ€Emission Green Quantumâ€Dot Lightâ€Emitting Diode with Dielectricâ€Metalâ€Dielectric Cathode. Digest of Technical Papers SID International Symposium, 2022, 53, 1355-1356.	0.3	2
149	P-179: Low Blur Effect and High Light Extraction Efficiency Enhancement of Organic Light Emitting Displays with Novel Microstructure Attachment. Digest of Technical Papers SID International Symposium, 2007, 38, 867-870.	0.3	1
150	Pâ€⊋17: 120% Luminance Enhancement of OLED by Patterned Microlens Array. Digest of Technical Papers SID International Symposium, 2008, 39, 2022-2024.	0.3	1
151	Electrical Current Aging of Mixed-Host Organic Light-Emitting Devices with Thin Doped Layer. Journal of the Electrochemical Society, 2009, 156, J342.	2.9	1
152	37.3: Smart Transflective Display Integrated with PDLC and OPVâ€Embeddedâ€OLED. Digest of Technical Papers SID International Symposium, 2009, 40, 530-531.	0.3	1
153	Pâ€44: Patterned Microlensâ€Array Films Assisted with Auxiliary Electrodes for Luminance Improvement in Largeâ€Area OLEDs. Digest of Technical Papers SID International Symposium, 2010, 41, 1405-1407.	0.3	1
154	Pâ€152: Emitterâ€Apodizationâ€Dependent Angular Luminance Enhancement of Microlensâ€Array Film Attached OLED Devices. Digest of Technical Papers SID International Symposium, 2010, 41, 1820-1823.	0.3	1
155	67.4: Submillisecondâ€response Blueâ€phase Liquid Crystal for Color Sequential Projection Displays. Digest of Technical Papers SID International Symposium, 2012, 43, 918-921.	0.3	1
156	P.112: High Efficiency Blue Phosphorescence Organic Light Emitting Device with Novel CbzTAZ host. Digest of Technical Papers SID International Symposium, 2013, 44, 1407-1409.	0.3	1
157	45.2: Extraction Efficiency Enhancement of AMOLED Display with Acceptable Blur by Attaching Trapezoid Array Film. Digest of Technical Papers SID International Symposium, 2014, 45, 646-647.	0.3	1
158	Pâ€162L: <i>Lateâ€News Poster</i> : Novel Bipolar Carbazoleâ€triazole Derivative as Host of Blue PhOLEDs. Digest of Technical Papers SID International Symposium, 2014, 45, 1586-1588.	0.3	1
159	P-196: High Efficiency Blue Phosphorescence Organic Light Emitting Device with Novel CbzBZ host. Digest of Technical Papers SID International Symposium, 2017, 48, 2003-2005.	0.3	1
160	Pâ€182: Universal Host oâ€ĐiCbzBz for High Efficiency Phosphorescence and Thermal Active Delayed Fluorescence Organic Light Emitting Device. Digest of Technical Papers SID International Symposium, 2017, 48, 1957-1959.	0.3	1
161	40â€4: Mothâ€eye Antiâ€reflection Surface for Sunlight Readable Flexible Displays. Digest of Technical Papers SID International Symposium, 2017, 48, 574-577.	0.3	1
162	13â€2: <i>Invited Paper:</i> High Efficiency Phosphorescence and Thermally Actived Delayed Fluorescence Organic Light Emitting Device. Digest of Technical Papers SID International Symposium, 2018, 49, 136-137.	0.3	1

#	Article	IF	CITATIONS
163	Effect of Carrier-Transporting Layer on Blue Phosphorescent Organic Light-Emitting Diodes. Photonics, 2021, 8, 124.	2.0	1
164	Pump-probe study on nonlinear switching in an all-active-semiconductor-optical-amplifier loop device. , 0, , .		0
165	Wavelength dependence and cross polarization effects of nonlinear switching in an all-semiconductor-optical-amplifier loop device. , 0, , .		0
166	All-semiconductor miniature nonlinear optical loop mirrors for GHz all-optical switching operation. , 0, , .		0
167	Study on operating lifetime of organic light emitting device. , 0, , .		Ο
168	Simulations on the radiation characteristics of an organic light-emitting diode. , 0, , .		0
169	Design and Analysis of Microoptical Elements for Display Applications. , 2006, , .		Ο
170	Red Phosphorescent Material Doped in the Hole- and Electron-Transport Layer of Organic Light-Emitting Device. , 2006, , .		0
171	Reliability Study of a Fluorescent Blue Organic Light-Emitting Device. Materials Research Society Symposia Proceedings, 2006, 965, 1.	0.1	Ο
172	Perylene Diimide as the Black-Layer Material of the OLEDs. Materials Research Society Symposia Proceedings, 2006, 965, 1.	0.1	0
173	White Organic Light-Emitting Devices with Selectively-Doped Emitting Layer. , 2006, , .		Ο
174	Nanostructure Induced Surface Plasma Resonance of Broadband Organic Emitting Materials. , 2007, , .		0
175	Degradation Induced Recombination-zone Shift in Mixed-host Organic Light-emitting Device. , 2007, , .		Ο
176	Extraction efficiency enhancement of an OLED using surface plasmon resonance. , 2007, , .		0
177	Recombination Zone Distribution and Current Enhancement in Amibipolar Organic Light-emitting Material. , 2007, , .		Ο
178	Femtosecond Pulse Shaping by Ag Nanoparticle Arrays: Plasmon-Enhanced Absorption Saturation. , 2009, , .		0
179	Pâ€155: OLED Display Attached by Patterned Microlens Array for Light Extraction with Negligible Image Blur. Digest of Technical Papers SID International Symposium, 2009, 40, 1700-1702.	0.3	0
180	Light control in organic electroluminescence devices by plasmonic grating coupled emission for biochemical applications. , 2009, , .		0

#	Article	IF	CITATIONS
181	Pâ€154: Broadband and Wideâ€Viewingâ€Angle Black Cathode of Organic Lightâ€Emitting Diode. Digest of Technical Papers SID International Symposium, 2009, 40, 1698-1699.	0.3	0
182	Pâ€158: Connecting Architecture for Organic Lightâ€emitting Diodes Integrated with Organic Photovoltaic Device. Digest of Technical Papers SID International Symposium, 2010, 41, 1841-1844.	0.3	0
183	High-performance organic photovoltaic device using a new amorphous molecular material of bis(4-(N-(l-naphthyl)phenylamino) phenyl)fumaronitrile. , 2010, , .		0
184	P-115: Electrical, Optical, and ITO Characteristics of a Flexible OLED Display. Digest of Technical Papers SID International Symposium, 2011, 42, 1539-1541.	0.3	0
185	P-180: Low-Reflectance Organic Light-emitting Diode Embedded with Organic Solar Cell. Digest of Technical Papers SID International Symposium, 2011, 42, 1773-1775.	0.3	0
186	68.3: Achieving High Efficiency White Organic Light-emitting Diodes based on Transient Electroluminescence Analysis. Digest of Technical Papers SID International Symposium, 2011, 42, 1010-1012.	0.3	0
187	Organic bifunctional device employing bis(naphthylphenylaminophenyl)fumaronitrile as absorption/emitting layer. , 2011, , .		0
188	Enhanced optical coupling in localized and band-gap characteristics of plasmonic nanostructure. Proceedings of SPIE, 2012, , .	0.8	0
189	Surface plasmon coupled emission in highly directional and sensitive plasmonic devices. Proceedings of SPIE, 2012, , .	0.8	0
190	39.2: Fully Integration of Transflective Hybrid Device Consisting of PDLC, OLED and OPV. Digest of Technical Papers SID International Symposium, 2012, 43, 534-536.	0.3	0
191	P-121: Colorful Reflective Organic Light Emitting Device without Bias. Digest of Technical Papers SID International Symposium, 2012, 43, 1514-1515.	0.3	0
192	Pâ€25: Improvement of Coupling Efficiency of OLED by Using Centeredâ€Hollow Microâ€lens Array Film together with Vâ€Grooves. Digest of Technical Papers SID International Symposium, 2012, 43, 1527-1530.	0.3	0
193	P.95: Process Technology of Flexible and Transparent Display by Stacking OLED and PDLC Embedded with OPV. Digest of Technical Papers SID International Symposium, 2013, 44, 1344-1346.	0.3	0
194	Engineering on Ag anode for efficient top-illuminated small molecular photovoltaic. , 2014, , .		0
195	Pâ€1 30: Fabrication of Liquid Crystal Cell with Corrugated and Parallel Electrodes. Digest of Technical Papers SID International Symposium, 2014, 45, 1476-1477.	0.3	0
196	Improvement in Device Performance and Reliability of Organic Light-Emitting Diodes through Deposition Rate Control. International Journal of Photoenergy, 2014, 2014, 1-7.	2.5	0
197	Boron subphthalocyanine-based organic photovoltaic device with record high open circuit voltage. , 2015, , .		0
198	40.4: High Efficiency Blue Phosphorescent Organic Lightâ€Emitting Diodes with >57 cd/A, >50 lm/W, and>25 % External Quantum Efficiency. Digest of Technical Papers SID International Symposium, 2015, 46, 613-616.	0.3	0

#	Article	IF	CITATIONS
199	A novel donor-acceptor-acceptor molecular for planar mix heterojunction C <inf>60</inf> based organic solar cells. , 2015, , .		0
200	Device performances of exciplex organic light-emitting diodes with different emitting layer thickness. , 2016, , .		0
201	High efficiency blue phosphorescent organic light-emitting diode using tetraphenylsilane core molecule as host material. , 2016, , .		0
202	Blue phosphorescent organic light-emitting diode with triazole host achieving high current efficiency. , 2016, , .		0
203	31.4: <i>Invited Paper:</i> Longâ€lifetime Blue Organic Lightâ€emitting Diode. Digest of Technical Papers SID International Symposium, 2018, 49, 343-344.	0.3	0
204	Organic Light-Emitting Diodes/Light Extraction. , 2018, , 247-255.		0
205	33â€4: Invited Paper: A Chemical Structure Approach Enhancing Light Outcoupling of Dopant OLEDs and Internal Quantum Efficiency of Nonâ€Đopant OLEDs Having Bluish TADF Emitters. Digest of Technical Papers SID International Symposium, 2019, 50, 470-473.	0.3	0
206	65â€3: Green Topâ€emission Quantum Dot Lightâ€emitting Diodes (TEâ€QLED) with Normal and Inverted Structure. Digest of Technical Papers SID International Symposium, 2020, 51, 968-970.	0.3	0
207	Pâ€168: High Efficiency (EQE>30%) TADFâ€OLED with Lightlyâ€doped Emitter (0.5%) by using TADFâ€Host. Dige of Technical Papers SID International Symposium, 2020, 51, 2020-2021.	st 0.3	0
208	Clarifying novelty and plagiarism: Submitting SID conference proceedings to JSID. Journal of the Society for Information Display, 2021, 29, 219-220.	2.1	0
209	Pâ€132: Simultaneous Enhancement of Efficiency and Lifetime in Blue Tripletâ€Triplet Annihilation Organic Lightâ€Emitting Diodes Using Doubleâ€Emitting Layer Structure. Digest of Technical Papers SID International Symposium, 2022, 53, 1506-1508.	0.3	0