Achim von Keudell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9042518/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasma chemical vapor deposition of hydrocarbon films: The influence of hydrocarbon source gas on the film properties. Journal of Applied Physics, 1999, 86, 3988-3996.	1.1	221
2	Characterization of the effluent of a He/O ₂ microscale atmospheric pressure plasma jet by quantitative molecular beam mass spectrometry. New Journal of Physics, 2010, 12, 013021.	1.2	173
3	Thermal conductivity of amorphous carbon thin films. Journal of Applied Physics, 2000, 88, 6317-6320.	1.1	158
4	Inactivation of Bacteria and Biomolecules by Lowâ€Pressure Plasma Discharges. Plasma Processes and Polymers, 2010, 7, 327-352.	1.6	137
5	Growth and erosion of hydrocarbon films investigated by in situ ellipsometry. Journal of Applied Physics, 1996, 79, 1092.	1.1	129
6	Atmospheric pressure microplasma jet as a depositing tool. Applied Physics Letters, 2006, 89, 251504.	1.5	114
7	Growth mechanism of amorphous hydrogenated carbon. Diamond and Related Materials, 2002, 11, 969-975.	1.8	112
8	A combined plasmaâ€ s urface model for the deposition of C:H films from a methane plasma. Journal of Applied Physics, 1994, 75, 7718-7727.	1.1	110
9	Chemical sputtering of hydrocarbon films. Journal of Applied Physics, 2003, 94, 2373-2380.	1.1	109
10	Surface loss probabilities of hydrocarbon radicals on amorphous hydrogenated carbon film surfaces: Consequences for the formation of re-deposited layers in fusion experiments. Nuclear Fusion, 1999, 39, 1451-1462.	1.6	99
11	Optical and electrical characterization of an atmospheric pressure microplasma jet for Arâ^•CH4 and Arâ^•C2H2 mixtures. Journal of Applied Physics, 2007, 101, 103307.	1.1	91
12	Quadrupole mass spectrometry of reactive plasmas. Journal Physics D: Applied Physics, 2012, 45, 403001.	1.3	90
13	Surface loss probabilities of hydrocarbon radicals on amorphous hydrogenated carbon film surfaces. Journal of Applied Physics, 2000, 87, 2719-2725.	1.1	89
14	Formation of polymer-like hydrocarbon films from radical beams of methyl and atomic hydrogen. Thin Solid Films, 2002, 402, 1-37.	0.8	88
15	Origin of the energetic ions at the substrate generated during high power pulsed magnetron sputtering of titanium. Journal Physics D: Applied Physics, 2014, 47, 224002.	1.3	86
16	Unexpected O and O ₃ production in the effluent of He/O ₂ microplasma jets emanating into ambient air. Plasma Sources Science and Technology, 2012, 21, 034019.	1.3	82
17	Thin film deposition by means of atmospheric pressure microplasma jet. Plasma Physics and Controlled Fusion, 2007, 49, B419-B427.	0.9	81
18	Heating of a dual frequency capacitively coupled plasma via the plasma series resonance. Plasma Sources Science and Technology, 2007, 16, 839-848.	1.3	80

#	Article	IF	CITATIONS
19	Direct identification of the synergism between methyl radicals and atomic hydrogen during growth of amorphous hydrogenated carbon films. Applied Physics Letters, 2000, 76, 676-678.	1.5	77
20	A robust method to measure metastable and resonant state densities from emission spectra in argon and argon-diluted low pressure plasmas. Journal Physics D: Applied Physics, 2008, 41, 065206.	1.3	74
21	Elementary processes in plasma–surface interaction: H-atom and ion-induced chemisorption of methyl on hydrocarbon film surfaces. Progress in Surface Science, 2004, 76, 21-54.	3.8	73
22	Surface processes during thin-film growth. Plasma Sources Science and Technology, 2000, 9, 455-467.	1.3	72
23	Foundations of low-temperature plasma physics—an introduction. Plasma Sources Science and Technology, 2017, 26, 113001.	1.3	72
24	Deposition of silicon dioxide films using an atmospheric pressure microplasma jet. Journal of Applied Physics, 2009, 105, .	1.1	68
25	Simultaneous interaction of methyl radicals and atomic hydrogen with amorphous hydrogenated carbon films. Journal of Applied Physics, 2001, 89, 2979-2986.	1.1	65
26	Deposition of carbon-free silicon dioxide from pure hexamethyldisiloxane using an atmospheric microplasma jet. Applied Physics Letters, 2008, 92, .	1.5	64
27	Novel method for absolute quantification of the flux and angular distribution of a radical source for atomic hydrogen. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 995-1001.	0.9	63
28	Deposition of dense hydrocarbon films from a nonbiased microwave plasma. Applied Physics Letters, 1993, 62, 937-939.	1.5	62
29	Inactivation of <i>Bacillus atrophaeus</i> and of <i>Aspergillus niger</i> using beams of argon ions, of oxygen molecules and of oxygen atoms. Journal Physics D: Applied Physics, 2008, 41, 115207.	1.3	62
30	Erosion of thin hydrogenated carbon films in oxygen, oxygen/hydrogen and water plasmas. Journal of Nuclear Materials, 1999, 264, 48-55.	1.3	60
31	The interaction of atomic hydrogen with very thin amorphous hydrogenated silicon films analyzed using in situ real time infrared spectroscopy: Reaction rates and the formation of hydrogen platelets. Journal of Applied Physics, 1998, 84, 489-495.	1.1	59
32	The role of chemical sputtering during plasma sterilization ofBacillus atrophaeus. Journal Physics D: Applied Physics, 2007, 40, 2826-2830.	1.3	59
33	Chemical sputtering of hydrocarbon films by low-energy ArÂion and H atom impact. Nuclear Fusion, 2002, 42, L27-L30.	1.6	58
34	Direct insertion of SiH3 radicals into strained Si-Si surface bonds during plasma deposition of hydrogenated amorphous silicon films. Physical Review B, 1999, 59, 5791-5798.	1.1	54
35	Mass spectrometry of atmospheric pressure plasmas. Plasma Sources Science and Technology, 2015, 24, 044008.	1.3	54
36	Mechanisms of the Deposition of Hydrogenated Carbon Films. Japanese Journal of Applied Physics, 1995, 34, 2163-2171.	0.8	53

#	Article	IF	CITATIONS
37	Surface loss probabilities of the dominant neutral precursors for film growth in methane and acetylene discharges. Applied Physics Letters, 1999, 74, 3800-3802.	1.5	52
38	Surface relaxation during plasma-enhanced chemical vapor deposition of hydrocarbon films, investigated byin situellipsometry. Journal of Applied Physics, 1997, 81, 1531-1535.	1.1	51
39	Spoke rotation reversal in magnetron discharges of aluminium, chromium and titanium. Plasma Sources Science and Technology, 2016, 25, 035001.	1.3	51
40	Time-Resolved Molecular Beam Mass Spectrometry of the Initial Stage of Particle Formation in an Ar/He/C2H2Plasma. Journal of Physical Chemistry A, 2007, 111, 10453-10459.	1.1	49
41	Ion-induced surface activation, chemical sputtering, and hydrogen release during plasma-assisted hydrocarbon film growth. Journal of Applied Physics, 2005, 97, 094904.	1.1	47
42	Growth precursors for a-C:H film deposition in pulsed inductively coupled methane plasmas. Journal of Applied Physics, 2005, 98, 073302.	1.1	46
43	Removal of Model Proteins Using Beams of Argon Ions, Oxygen Atoms and Molecules: Mimicking the Action of Lowâ€Pressure Ar/O ₂ ICP Discharges. Plasma Processes and Polymers, 2009, 6, 255-261.	1.6	44
44	The Role of Oxygen and Surface Reactions in the Deposition of Silicon Oxide like Films from HMDSO at Atmospheric Pressure. Plasma Processes and Polymers, 2012, 9, 1116-1124.	1.6	43
45	Spoke transitions in HiPIMS discharges. Plasma Sources Science and Technology, 2015, 24, 045005.	1.3	42
46	Spokes in high power impulse magnetron sputtering plasmas. Journal Physics D: Applied Physics, 2018, 51, 453001.	1.3	42
47	Role of hydrogen ions in plasmaâ€enhanced chemical vapor deposition of hydrocarbon films, investigated by in situ ellipsometry. Applied Physics Letters, 1995, 66, 1322-1324.	1.5	38
48	Elimination of Biological Contaminations from Surfaces by Plasma Discharges: Chemical Sputtering. ChemPhysChem, 2010, 11, 1382-1389.	1.0	38
49	Calibration of a miniaturized retarding field analyzer for low-temperature plasmas: geometrical transparency and collisional effects. Journal Physics D: Applied Physics, 2010, 43, 055203.	1.3	38
50	Quantification of a radical beam source for methyl radicals. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 101-107.	0.9	37
51	Hydrogen elimination as a key step for the formation of polymerlike hydrocarbon films. Journal of Applied Physics, 2001, 90, 3585-3594.	1.1	35
52	Temperature dependence of the sticking coefficient of methyl radicals at hydrocarbon film surfaces. Journal of Chemical Physics, 2002, 116, 5125.	1.2	35
53	Characterisation of deposited hydrocarbon layers below the divertor and in the pumping ducts of ASDEX Upgrade. Journal of Nuclear Materials, 2003, 313-316, 429-433.	1.3	33
54	Molecular beam sampling system with very high beam-to-background ratio: The rotating skimmer concept. Review of Scientific Instruments, 2009, 80, 055107.	0.6	33

#	Article	IF	CITATIONS
55	Structure of plasma-deposited amorphous hydrogenated boron-carbon thin films. Thin Solid Films, 1998, 312, 147-155.	0.8	32
56	Dynamic of the growth flux at the substrate during high-power pulsed magnetron sputtering (HiPIMS) of titanium. Journal Physics D: Applied Physics, 2013, 46, 485204.	1.3	32
57	Insight into the Reaction Scheme of Si <scp>O</scp> ₂ Film Deposition at Atmospheric Pressure. Plasma Processes and Polymers, 2013, 10, 1061-1073.	1.6	32
58	Direct verification of the ion-neutral synergism during hydrocarbon film growth. Journal of Applied Physics, 2003, 93, 3352-3358.	1.1	31
59	A Physicist's Perspective on "Views on Macroscopic Kinetics of Plasma Polymerisation― Plasma Processes and Polymers, 2010, 7, 376-379.	1.6	31
60	Note: Ion-induced secondary electron emission from oxidized metal surfaces measured in a particle beam reactor. Review of Scientific Instruments, 2015, 86, 106102.	0.6	31
61	Control of the plasma chemistry of a pulsed inductively coupled methane plasma. Plasma Sources Science and Technology, 2005, 14, 543-548.	1.3	30
62	Revising secondary electron yields of ion-sputtered metal oxides. Journal Physics D: Applied Physics, 2016, 49, 16LT01.	1.3	30
63	Evidence for atomic H insertion into strained Si–Si bonds in the amorphous hydrogenated silicon subsurface fromin situinfrared spectroscopy. Applied Physics Letters, 1997, 71, 3832-3834.	1.5	29
64	Surface reactions of hydrocarbon radicals: suppression of the re-deposition in fusion experiments via a divertor liner. Journal of Nuclear Materials, 2001, 290-293, 231-237.	1.3	29
65	The influence of hydrogen ion bombardment on plasma-assisted hydrocarbon film growth. Diamond and Related Materials, 2003, 12, 85-89.	1.8	29
66	Excitation and dissociation of CO ₂ heavily diluted in noble gas atmospheric pressure plasma. Journal Physics D: Applied Physics, 2020, 53, 125205.	1.3	29
67	Simultaneous interaction of methyl radicals and atomic hydrogen with amorphous hydrogenated carbon films, as investigated with optical in situ diagnostics. Applied Physics A: Materials Science and Processing, 2001, 72, 551-556.	1.1	28
68	Initial Polymerization Reactions in Particle-Forming Ar/He/C ₂ H ₂ Plasmas Studied via Quantitative Mass Spectrometry. Journal of Physical Chemistry A, 2008, 112, 11319-11329.	1.1	28
69	Ion-enhanced oxidation of aluminum as a fundamental surface process during target poisoning in reactive magnetron sputtering. Journal of Applied Physics, 2010, 107, .	1.1	28
70	Interaction of hydrogen plasmas with hydrocarbon films, investigated by infrared spectroscopy using an optical cavity substrate. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 402-407.	0.9	27
71	Phase resolved optical emission spectroscopy of coaxial microplasma jet operated with He and Ar. European Physical Journal D, 2010, 60, 539-546.	0.6	27
72	Correlative plasma-surface model for metastable Cr-Al-N: Frenkel pair formation and influence of the stress state on the elastic properties. Journal of Applied Physics, 2017, 121, .	1.1	27

#	Article	IF	CITATIONS
73	Foundations of physical vapor deposition with plasma assistance. Plasma Sources Science and Technology, 2022, 31, 083001.	1.3	27
74	Characterization of a rotating nanoparticle cloud in an inductively coupled plasma. Plasma Sources Science and Technology, 2006, 15, 556-563.	1.3	26
75	Probing the electron density in HiPIMS plasmas by target inserts. Journal Physics D: Applied Physics, 2017, 50, 505204.	1.3	26
76	Nanosecond plasmas in water: ignition, cavitation and plasma parameters. Plasma Sources Science and Technology, 2019, 28, 085003.	1.3	26
77	Electron density, temperature and the potential structure of spokes in HiPIMS. Plasma Sources Science and Technology, 2020, 29, 025006.	1.3	25
78	Particle-beam experiment to study heterogeneous surface reactions relevant to plasma-assisted thin film growth and etching. Review of Scientific Instruments, 2003, 74, 5123-5136.	0.6	24
79	Surface reactions as carbon removal mechanism in deposition of silicon dioxide films at atmospheric pressure. Applied Physics Letters, 2011, 98, 111502.	1.5	24
80	Absolutely calibrated mass spectrometry measurement of reactive and stable plasma chemistry products in the effluent of a He/H ₂ O atmospheric plasma. Journal Physics D: Applied Physics, 2017, 50, 335204.	1.3	23
81	Influence of spokes on the ionized metal flux fraction in chromium high power impulse magnetron sputtering. Journal Physics D: Applied Physics, 2018, 51, 115201.	1.3	23
82	Surface Modification of Polypropylene (<scp>PP</scp>) by Argon Ions and <scp>UV</scp> Photons. Plasma Processes and Polymers, 2013, 10, 1110-1119.	1.6	22
83	High power impulse sputtering of chromium: correlation between the energy distribution of chromium ions and spoke formation. Journal Physics D: Applied Physics, 2015, 48, 295202.	1.3	22
84	Fundamental aspects of substrate biasing: ion velocity distributions and nonlinear effects. Journal Physics D: Applied Physics, 2010, 43, 335201.	1.3	20
85	Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces. Review of Scientific Instruments, 2013, 84, 103303.	0.6	20
86	Adsorption and reactivity of nitrogen atoms on silica surface under plasma exposure. Journal Physics D: Applied Physics, 2014, 47, 475204.	1.3	19
87	Velocity distribution of titanium neutrals in the target region of high power impulse magnetron sputtering discharges. Plasma Sources Science and Technology, 2018, 27, 105012.	1.3	19
88	Nanosecond pulsed discharges in distilled water: I. Continuum radiation and plasma ignition. Plasma Sources Science and Technology, 2020, 29, 095008.	1.3	18
89	X-ray photoelectron spectroscopy on implanted argon as a tool to follow local structural changes in thin films. Thin Solid Films, 2011, 520, 1625-1630.	0.8	17
90	Chemical and Physical Sputtering of Polyethylene Terephthalate (PET). Plasma Processes and Polymers, 2013, 10, 225-234.	1.6	17

#	Article	IF	CITATIONS
91	Influence of nitrogen admixture to argon on the ion energy distribution in reactive high power pulsed magnetron sputtering of chromium. Journal Physics D: Applied Physics, 2017, 50, 135203.	1.3	17
92	Fundamental study of an industrial reactive HPPMS (Cr,Al)N process. Journal of Applied Physics, 2017, 122, .	1.1	17
93	Non-equilibrium excitation of CO ₂ in an atmospheric pressure helium plasma jet. Journal Physics D: Applied Physics, 2018, 51, 345202.	1.3	17
94	Infrared analysis of thin films: amorphous, hydrogenated carbon on silicon. Brazilian Journal of Physics, 2000, 30, 508-516.	0.7	16
95	Controlled particle generation in an inductively coupled plasma. Applied Physics Letters, 2006, 88, 141503.	1.5	16
96	The role of C ₂ H ₄ for the acetylene chemistry in particle forming Ar/He/C ₂ H ₂ plasmas studied via quantitative mass spectrometry. Plasma Sources Science and Technology, 2009, 18, 034004.	1.3	16
97	Formation of crystalline <i>γ</i> -Al ₂ O ₃ induced by variable substrate biasing during reactive magnetron sputtering. Journal Physics D: Applied Physics, 2013, 46, 084004.	1.3	16
98	Fundamentals and Applications of Reflection FTIR Spectroscopy for the Analysis of Plasma Processes at Materials Interfaces. Plasma Processes and Polymers, 2015, 12, 926-940.	1.6	16
99	Review Article: Unraveling synergistic effects in plasma-surface processes by means of beam experiments. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, 050801.	0.9	16
100	Investigation of plasma spokes in reactive high power impulse magnetron sputtering discharge. Journal of Applied Physics, 2017, 121, .	1.1	16
101	Functional plasma polymers deposited in capacitively and inductively coupled plasmas. Applied Physics Letters, 2012, 100, .	1.5	15
102	Exploring the Structure of the Modified Top Layer of Polypropylene During Plasma Treatment. Plasma Processes and Polymers, 2015, 12, 564-573.	1.6	15
103	A novel setup for spectroscopic ellipsometry using an acoustoâ€optic tuneable filter. Review of Scientific Instruments, 1995, 66, 3545-3550.	0.6	14
104	Consequences of the temperature and flux dependent sticking coefficient of methyl radicals for nuclear fusion experiments. Nuclear Fusion, 2003, 43, 25-29.	1.6	14
105	Bimodal substrate biasing to control γ-Al ₂ O ₃ deposition during reactive magnetron sputtering. Journal of Applied Physics, 2013, 114, 113301.	1.1	14
106	Fast charge exchange ions in high power impulse magnetron sputtering of titanium as probes for the electrical potential. Plasma Sources Science and Technology, 2017, 26, 035007.	1.3	14
107	Link between plasma properties with morphological, structural and mechanical properties of thin Ti films deposited by high power impulse magnetron sputtering. Surface and Coatings Technology, 2021, 418, 127235.	2.2	14
108	Pattern Formation in High Power Impulse Magnetron Sputtering (HiPIMS) Plasmas. Plasma Chemistry and Plasma Processing, 2020, 40, 643-660.	1.1	13

#	Article	IF	CITATIONS
109	Study of the transition from self-organised to homogeneous plasma distribution in chromium HiPIMS discharge. Journal Physics D: Applied Physics, 2020, 53, 155201.	1.3	13
110	Roughness evolution during a-C:H film growth in methane plasmas. Journal of Applied Physics, 2006, 100, 053302.	1.1	12
111	Etching of <i>Bacillus atrophaeus</i> by oxygen atoms, molecules and argon ions. Journal of Physics: Conference Series, 2008, 133, 012012.	0.3	12
112	Erosion of amorphous hydrogenated boron-carbon thin films. Journal of Nuclear Materials, 1996, 231, 151-154.	1.3	11
113	Can plasma experiments unravel microscopic surface processes in thin film growth and erosion? Implications of particle–beam experiments on the understanding of a-C:H growth. Vacuum, 2003, 71, 361-376.	1.6	11
114	Rotation of a nanoparticle cloud in an inductively coupled plasma induced by weak static magnetic fields. Plasma Sources Science and Technology, 2007, 16, 774-784.	1.3	11
115	Validation of etching model of polypropylene layers exposed to argon plasmas. Plasma Processes and Polymers, 2019, 16, 1900019.	1.6	11
116	Chemistry in nanosecond plasmas in water. Plasma Processes and Polymers, 2020, 17, 1900192.	1.6	11
117	Nanosecond pulsed discharges in distilled water-Part II: line emission and plasma propagation. Plasma Sources Science and Technology, 2020, 29, 085021.	1.3	11
118	Time-resolved measurement of film growth during high-power pulsed magnetron sputtering (HIPIMS) of titanium. Journal Physics D: Applied Physics, 2013, 46, 155204.	1.3	10
119	Ion-induced oxidation of aluminum during reactive magnetron sputtering. Journal of Applied Physics, 2013, 113, 143303.	1.1	10
120	Combined In Situ XPS and UHV-Chemical Force Microscopy (CFM) Studies of the Plasma Induced Surface Oxidation of Polypropylene. Plasma Processes and Polymers, 2014, 11, 256-262.	1.6	10
121	Composite targets in HiPIMS plasmas: Correlation of in-vacuum XPS characterization and optical plasma diagnostics. Journal of Applied Physics, 2017, 121, 171912.	1.1	10
122	Time-resolved measurement of film growth during high-power pulsed magnetron sputtering (HPPMS) of titanium: the rotating shutter concept. Journal Physics D: Applied Physics, 2012, 45, 402001.	1.3	9
123	Control of High Power Pulsed Magnetron Discharge by Monitoring the Current Voltage Characteristics. Contributions To Plasma Physics, 2016, 56, 918-926.	0.5	9
124	Advantages of the "optical cavity substrate―for real time infrared spectroscopy of plasma–surface interactions. Journal of Applied Physics, 2002, 91, 4840-4845.	1.1	8
125	Anomalous Roughness Scaling of Wellâ€Ordered Amorphous Fluorocarbon Films Deposited from an Octafluorocyclobutane Plasma. Plasma Processes and Polymers, 2008, 5, 653-660.	1.6	8
126	Species transport on the target during high power impulse magnetron sputtering. Applied Physics Letters, 2017, 110, 081603.	1.5	8

#	Article	IF	CITATIONS
127	Connection between target poisoning and current waveforms in reactive high-power impulse magnetron sputtering of chromium. Plasma Sources Science and Technology, 2018, 27, 084004.	1.3	8
128	Velocity distribution of metal ions in the target region of HiPIMS: the role of Coulomb collisions. Plasma Sources Science and Technology, 2020, 29, 125003.	1.3	8
129	Particle-induced oscillations in inductively coupled plasmas. Plasma Sources Science and Technology, 2004, 13, 285-292.	1.3	7
130	Elementary surface processes during reactive magnetron sputtering of chromium. Journal of Applied Physics, 2015, 118, 133301.	1.1	7
131	Sampling of ions at atmospheric pressure: ion transmission and ion energy studied by simulation and experiment. European Physical Journal D, 2016, 70, 1.	0.6	7
132	Methods of gas purification and effect on the ion composition in an RF atmospheric pressure plasma jet investigated by mass spectrometry. EPJ Techniques and Instrumentation, 2016, 3, .	0.5	7
133	Electric potential screening on metal targets submitted to reactive sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	7
134	Synchronising optical emission spectroscopy to spokes in magnetron sputtering discharges. Plasma Sources Science and Technology, 0, , .	1.3	7
135	Deposition of dense C:H films at elevated substrate temperature. Diamond and Related Materials, 1993, 2, 251-254.	1.8	6
136	Surface reactions during plasma-enhanced chemical vapor deposition of hydrocarbon films. Nuclear Instruments & Methods in Physics Research B, 1997, 125, 323-327.	0.6	6
137	Ion-induced secondary electron emission of oxidized nickel and copper studied in beam experiments. Plasma Sources Science and Technology, 2022, 31, 025017.	1.3	6
138	The Role of Ions for the Deposition of Hydrocarbon Films, investigated by In-Situ Ellipsometry. Materials Research Society Symposia Proceedings, 1995, 388, 355.	0.1	5
139	Thin film growth from a low pressure plasma excited in a supersonic expanding gas jet. Journal Physics D: Applied Physics, 2009, 42, 095205.	1.3	5
140	Time-resolved measurement of film growth during reactive high power pulsed magnetron sputtering (HIPIMS) of titanium nitride. Journal Physics D: Applied Physics, 2013, 46, 495201.	1.3	5
141	Decoupling of ion―and photonâ€activation mechanisms in polymer surfaces exposed to lowâ€ŧemperature plasmas. Plasma Processes and Polymers, 2018, 15, 1700230.	1.6	5
142	Dedicated setup to isolate plasma catalysis mechanisms. Journal Physics D: Applied Physics, 2021, 54, 134005.	1.3	5
143	Ignition and propagation of nanosecond pulsed plasmas in distilled water—Negative vs positive polarity applied to a pin electrode. Journal of Applied Physics, 2021, 129,	1.1	5
144	Development of anin situellipsometer for deposition and erosion studies at the first wall of a tokamak. Nuclear Fusion, 2009, 49, 045004.	1.6	4

#	Article	IF	CITATIONS
145	Embedded argon as a tool for sampling local structure in thin plasma deposited aluminum oxide films. Journal of Applied Physics, 2012, 112, .	1.1	4
146	Target implantation and redeposition processes during high-power impulse magnetron sputtering of aluminum. Journal Physics D: Applied Physics, 2013, 46, 084009.	1.3	4
147	Fast Time Resolved Techniques as Key to the Understanding of Energy and Particle Transport in HPPMS-Plasmas. IEEE Transactions on Plasma Science, 2014, 42, 2812-2813.	0.6	4
148	Oxygen Removal from a Hydrocarbon Containing Gas Stream by Plasma Catalysis. Plasma Chemistry and Plasma Processing, 2021, 41, 619-642.	1.1	4
149	Secondary electron emission coefficient of C:H and Si:C thin films and some relations to their morphology and composition. Diamond and Related Materials, 1996, 5, 1087-1095.	1.8	3
150	Surface relaxation during plasma chemical vapor deposition of diamond-like carbon films, investigated by in-situ ellipsometry. Thin Solid Films, 1997, 308-309, 195-198.	0.8	3
151	Multivariate analysis of noise-corrupted PECVD data. Thin Solid Films, 1997, 307, 65-70.	0.8	3
152	BIODECON: Plasma Decontamination in Medical Technology. Plasma Processes and Polymers, 2006, 3, 75-76.	1.6	3
153	Development of the sputtering yields of ArF photoresist after the onset of argon ion bombardment. Journal of Applied Physics, 2013, 113, .	1.1	3
154	Various Shapes of Plasma Spokes Observed in HiPIMS. IEEE Transactions on Plasma Science, 2014, 42, 2810-2811.	0.6	3
155	The search for growth precursors in reactive plasmas: from nanoparticles to microplasmas. Plasma Sources Science and Technology, 2007, 16, S94-S100.	1.3	2
156	Nonlinear evolution of surface morphology under shadowing. Physical Review E, 2013, 87, 042404.	0.8	2
157	The effect of surface reactions of O, O ₃ and N on film properties during the growth of silica-like films. Journal Physics D: Applied Physics, 2014, 47, 224005.	1.3	2
158	Propagation of nanosecond plasmas in liquids—Streamer velocities and streamer lengths. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 043003.	0.9	2
159	SiO 2 microstructure evolution during plasma deposition analyzed via ellipsometric porosimetry. Plasma Processes and Polymers, 2019, 16, 1900015.	1.6	1
160	Gepulste Hochleistungs-Magnetron-Plasmen (HPPMS). Vakuum in Forschung Und Praxis, 2016, 28, 24-27.	0.0	0
161	SiO ₂ microstructure evolution during plasma deposition analyzed via ellipsometric porosimetry. Plasma Processes and Polymers, 2020, 17, 2000036.	1.6	0