
Peter Cotty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9042473/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic Islands in the Pathogenic Filamentous Fungus Aspergillus fumigatus. PLoS Genetics, 2008, 4, e1000046.	1.5	473
2	Influences of climate on aflatoxin producing fungi and aflatoxin contamination. International Journal of Food Microbiology, 2007, 119, 109-115.	2.1	410
3	Virulence and Cultural Characteristics of Two <i>Aspergillus flavus</i> Strains Pathogenic on Cotton. Phytopathology, 1989, 79, 808.	1.1	371
4	Outbreak of an Acute Aflatoxicosis in Kenya in 2004: Identification of the Causal Agent. Applied and Environmental Microbiology, 2007, 73, 2762-2764.	1.4	333
5	Influence of Field Application of an Atoxigenic Strain ofAspergillus flavuson the Populations ofA. flavusInfecting Cotton Bolls and on the Aflatoxin Content of Cottonseed. Phytopathology, 1994, 84, 1270.	1.1	249
6	Biological control of aflatoxins in Africa: current status and potential challenges in the face of climate change. World Mycotoxin Journal, 2016, 9, 771-789.	0.8	232
7	United States Department of Agriculture?Agricultural Research Service research on pre-harvest prevention of mycotoxins and mycotoxigenic fungi in US crops. Pest Management Science, 2003, 59, 629-642.	1.7	197
8	Aflatoxin-producing potential of communities of Aspergillus section Flavi from cotton producing areas in the United States. Mycological Research, 1997, 101, 698-704.	2.5	192
9	Distribution and toxigenicity of Aspergillus species isolated from maize kernels from three agro-ecological zones in Nigeria. International Journal of Food Microbiology, 2008, 122, 74-84.	2.1	176
10	Molecular genetic evidence for the involvement of a specific polygalacturonase, P2c, in the invasion and spread of Aspergillus flavus in cotton bolls. Applied and Environmental Microbiology, 1997, 63, 3548-3552.	1.4	170
11	Aflatoxin Biosynthesis Cluster Gene cypA Is Required for G Aflatoxin Formation. Applied and Environmental Microbiology, 2004, 70, 6518-6524.	1.4	169
12	Divergence of West African and North American Communities of Aspergillus Section Flavi. Applied and Environmental Microbiology, 1999, 65, 2264-2266.	1.4	164
13	Vegetative compatibility and genetic diversity in the Aspergillus flavus population of a single field. Canadian Journal of Botany, 1991, 69, 1707-1711.	1.2	161
14	Genetic diversity in <i>Aspergillus flavus</i> : association with aflatoxin production and morphology. Canadian Journal of Botany, 1993, 71, 23-31.	1.2	159
15	An isolate of Aspergillus flavus used to reduce aflatoxin contamination in cottonseed has a defective polyketide synthase gene. Applied Microbiology and Biotechnology, 2004, 65, 473-478.	1.7	148
16	Reduction in Aflatoxin Content of Maize by Atoxigenic Strains of Aspergillus flavus. Journal of Food Protection, 1991, 54, 623-626.	0.8	146
17	Evaluation of atoxigenic isolates of <i>Aspergillus flavus</i> as potential biocontrol agents for aflatoxin in maize. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2008, 25, 1264-1271.	1.1	142

18 Agriculture, Aflatoxins and Aspergillus. , 1994, , 1-27.

#	Article	IF	CITATIONS
19	Diversity of aflatoxin-producing fungi and their impact on food safety in sub-Saharan Africa. International Journal of Food Microbiology, 2014, 174, 113-122.	2.1	136
20	Competitive Exclusion of a Toxigenic Strain ofAspergillus flavusby an Atoxigenic Strain. Phytopathology, 1993, 83, 1283.	1.1	132
21	Field efficacy of a mixture of atoxigenic Aspergillus flavus Link:Fr vegetative compatibility groups in preventing aflatoxin contamination in maize (Zea mays L.). Biological Control, 2014, 72, 62-70.	1.4	127
22	Aflatoxin biosynthesis gene clusters and flanking regions. Journal of Applied Microbiology, 2005, 99, 518-527.	1.4	117
23	Aflatoxin-producing Aspergillus species from Thailand. International Journal of Food Microbiology, 2007, 114, 153-159.	2.1	117
24	Identification of Atoxigenic <i>Aspergillus flavus</i> Isolates to Reduce Aflatoxin Contamination of Maize in Kenya. Plant Disease, 2011, 95, 212-218.	0.7	116
25	Variability among atoxigenic Aspergillus flavus strains in ability to prevent aflatoxin contamination and production of aflatoxin biosynthetic pathway enzymes. Applied and Environmental Microbiology, 1994, 60, 2248-2251.	1.4	116
26	Comparison of four media for the isolation ofAspergillus flavus group fungi. Mycopathologia, 1994, 125, 157-162.	1.3	114
27	Impact of <i>Aspergillus</i> section <i>Flavi</i> community structure on the development of lethal levels of aflatoxins in Kenyan maize (<i>Zea mays</i>). Journal of Applied Microbiology, 2010, 108, 600-610.	1.4	113
28	Living Maize Embryo Influences Accumulation of Aflatoxin in Maize Kernels. Journal of Food Protection, 1993, 56, 967-971.	0.8	111
29	Sequence comparison of aflR from different Aspergillus species provides evidence for variability in regulation of aflatoxin production. Fungal Genetics and Biology, 2003, 38, 63-74.	0.9	109
30	Aflatoxin and Sclerotial Production byAspergillus flavus: Influence of pH. Phytopathology, 1988, 78, 1250.	1.1	108
31	Variation in Competitive Ability Among Isolates of <i>Aspergillus flavus</i> from Different Vegetative Compatibility Groups During Maize Infection. Phytopathology, 2010, 100, 150-159.	1.1	104
32	<i>Aspergillus flavus</i> diversity on crops and in the environment can be exploited to reduce aflatoxin exposure and improve health. Annals of the New York Academy of Sciences, 2012, 1273, 7-17.	1.8	95
33	Effect of Atoxigenic Strains of Aspergillus flavus on Aflatoxin Contamination of Developing Cottonseed. Plant Disease, 1990, 74, 233.	0.7	94
34	Distribution of Aspergillus section Flavi in soils of maize fields in three agroecological zones of Nigeria. Soil Biology and Biochemistry, 2009, 41, 37-44.	4.2	92
35	Aflatoxin-free transgenic maize using host-induced gene silencing. Science Advances, 2017, 3, e1602382.	4.7	88
36	Distribution of Aspergillus Section Flavi among Field Soils from the Four Agroecological Zones of the Republic of BA©nin, West Africa. Plant Disease, 2002, 86, 434-439.	0.7	85

#	Article	IF	CITATIONS
37	Association of aflatoxin biosynthesis and sclerotial development in Aspergillus parasiticus. Mycopathologia, 2002, 153, 41-48.	1.3	84
38	Aspergillus flavus hydrolases: their roles in pathogenesis and substrate utilization. Applied Microbiology and Biotechnology, 2007, 77, 497-504.	1.7	84
39	Formation of Sclerotia and Aflatoxins in Developing Cotton Bolls Infected by the S Strain of Aspergillus flavus and Potential for Biocontrol with an Atoxigenic Strain. Phytopathology, 1997, 87, 940-945.	1.1	83
40	Genetic isolation among sympatric vegetative compatibility groups of the aflatoxin-producing fungus Aspergillus flavus. Molecular Ecology, 2010, 19, 269-280.	2.0	81
41	Prevalence of Aflatoxin Contamination in Maize and Groundnut in Ghana: Population Structure, Distribution, and Toxigenicity of the Causal Agents. Plant Disease, 2018, 102, 764-772.	0.7	80
42	Deadly strains of Kenyan Aspergillus are distinct from other aflatoxin producers. European Journal of Plant Pathology, 2012, 132, 419-429.	0.8	79
43	Population dynamics of Aspergillus flavus in the air of an intensively cultivated region of south-west Arizona. Plant Pathology, 2004, 53, 422-433.	1.2	72
44	Degeneration of aflatoxin gene clusters in Aspergillus flavus from Africa and North America. AMB Express, 2016, 6, 62.	1.4	72
45	Biological Control Products for Aflatoxin Prevention in Italy: Commercial Field Evaluation of Atoxigenic Aspergillus flavus Active Ingredients. Toxins, 2018, 10, 30.	1.5	72
46	Aspergillus flavus in Soils and Corncobs in South Texas: Implications for Management of Aflatoxins in Corn-Cotton Rotations. Plant Disease, 2004, 88, 1366-1371.	0.7	71
47	Molecular characterization of atoxigenic strains for biological control of aflatoxins in Nigeria. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2010, 27, 576-590.	1.1	70
48	Crop rotation and soil temperature influence the community structure of Aspergillus flavus in soil. Soil Biology and Biochemistry, 2010, 42, 1842-1847.	4.2	68
49	Aflatoxin contamination of groundnut and maize in Zambia: observed and potential concentrations. Journal of Applied Microbiology, 2017, 122, 1471-1482.	1.4	68
50	Ecology of aflatoxin producing fungi and biocontrol of aflatoxin contamination. Mycotoxin Research, 2006, 22, 110-117.	1.3	67
51	Environmental distribution and genetic diversity of vegetative compatibility groups determine biocontrol strategies to mitigate aflatoxin contamination of maize by <scp><i>A</i></scp> <i>ASpergillus flavus</i>	2.0	66
52	Spatial and Temporal Patterns of Aspergillus flavus Strain Composition and Propagule Density in Yuma County, Arizona, Soils. Plant Disease, 1997, 81, 911-916.	0.7	65
53	Evaluation of the Atoxigenic <i>Aspergillus flavus</i> Strain AF36 in Pistachio Orchards. Plant Disease, 2014, 98, 948-956.	0.7	65
54	The Atoxigenic Biocontrol Product Aflasafe SN01 Is a Valuable Tool to Mitigate Aflatoxin Contamination of Both Maize and Groundnut Cultivated in Senegal. Plant Disease, 2020, 104, 510-520.	0.7	64

Peter Cotty

#	Article	IF	CITATIONS
55	Variability in nitrogen regulation of aflatoxin production by Aspergillus flavus strains. Applied Microbiology and Biotechnology, 2002, 60, 174-178.	1.7	56
56	Relationships between inÂvivo and inÂvitro aflatoxin production: reliable prediction of fungal ability to contaminate maize with aflatoxins. Fungal Biology, 2012, 116, 503-510.	1.1	56
57	Variation in polygalacturonase production among Aspergillus flavus isolates. Applied and Environmental Microbiology, 1990, 56, 3885-3887.	1.4	56
58	Pre- and postharvest management of aflatoxin in maize: an African perspective , 2008, , 219-229.		55
59	Identification of genetic defects in the atoxigenic biocontrol strain Aspergillus flavus K49 reveals the presence of a competitive recombinant group in field populations. International Journal of Food Microbiology, 2012, 154, 192-196.	2.1	54
60	Aflatoxin contamination of dried red chilies: Contrasts between the United States and Nigeria, two markets differing in regulation enforcement. Food Control, 2017, 80, 374-379.	2.8	54
61	Competitive exclusion of aflatoxin producers: farmer-driven research and development , 2007, , 241-253.		53
62	Development of a GFP-Expressing Aspergillus flavus Strain to Study Fungal Invasion, Colonization, and Resistance in Cottonseed. Mycopathologia, 2008, 165, 89-97.	1.3	52
63	"Ground-Truthing―Efficacy of Biological Control for Aflatoxin Mitigation in Farmers' Fields in Nigeria: From Field Trials to Commercial Usage, a 10-Year Study. Frontiers in Microbiology, 2019, 10, 2528.	1.5	50
64	Method for monitoring deletions in the aflatoxin biosynthesis gene cluster of <i>Aspergillus flavus</i> with multiplex PCR. Letters in Applied Microbiology, 2015, 60, 60-65.	1.0	49
65	Atoxigenic Aspergillus flavus endemic to Italy for biocontrol of aflatoxins in maize. BioControl, 2015, 60, 125-134.	0.9	49
66	Aflatoxin Contamination of Commercial Cottonseed in South Texas. Phytopathology, 2003, 93, 1190-1200.	1.1	48
67	Analysis of single nucleotide polymorphisms in three genes shows evidence for genetic isolation of certain Aspergillus flavus vegetative compatibility groups. FEMS Microbiology Letters, 2007, 268, 231-236.	0.7	48
68	Etiology and management of aflatoxin contamination , 2008, , 287-299.		48
69	Twentyâ€four microsatellite markers for the aflatoxinâ€producing fungus <i>Aspergillus flavus</i> . Molecular Ecology Resources, 2009, 9, 264-267.	2.2	47
70	Characterization of Aspergilli from dried red chilies (Capsicum spp.): Insights into the etiology of aflatoxin contamination. International Journal of Food Microbiology, 2019, 289, 145-153.	2.1	47
71	Influence of Lipids with and without Other Cottonseed Reserve Materials on Aflatoxin B1Production byAspergillus flavus. Journal of Agricultural and Food Chemistry, 2000, 48, 3611-3615.	2.4	45
72	Spatial Relationships of Soil Texture and Crop Rotation to Aspergillus flavus Community Structure in South Texas. Phytopathology, 2006, 96, 599-607.	1.1	45

#	Article	IF	CITATIONS
73	Aspergillus section Flavi community structure in Zambia influences aflatoxin contamination of maize and groundnut. International Journal of Food Microbiology, 2017, 261, 49-56.	2.1	45
74	Prevalence and mitigation of aflatoxins in Kenya (1960-to date). World Mycotoxin Journal, 2018, 11, 341-357.	0.8	45
75	Structure of an Aspergillus flavus population from maize kernels in northern Italy. International Journal of Food Microbiology, 2013, 162, 1-7.	2.1	44
76	Zinniol Production byAlternariaSpecies. Phytopathology, 1984, 74, 785.	1.1	43
77	A morphologically distinct strain of <i>Aspergillus nomius</i> . Mycologia, 1998, 90, 618-623.	0.8	42
78	Genetic Analysis of the Aspergillus flavus Vegetative Compatibility Group to Which a Biological Control Agent That Limits Aflatoxin Contamination in U.S. Crops Belongs. Applied and Environmental Microbiology, 2015, 81, 5889-5899.	1.4	41
79	Aflatoxin Contamination of Dried Insects and Fish in Zambia. Journal of Food Protection, 2018, 81, 1508-1518.	0.8	41
80	Potential of Atoxigenic Aspergillus flavus Vegetative Compatibility Groups Associated With Maize and Groundnut in Ghana as Biocontrol Agents for Aflatoxin Management. Frontiers in Microbiology, 2019, 10, 2069.	1.5	41
81	Incidence and stability of infection by double-stranded RNA genetic elements in <i>Aspergillus</i> section <i>flavi</i> and effects on aflatoxigenicity. Canadian Journal of Botany, 1996, 74, 716-725.	1.2	40
82	Influence of plant host species on intraspecific competition during infection by <scp><i>Aspergillus flavus</i></scp> . Plant Pathology, 2013, 62, 1310-1318.	1.2	40
83	Variation in In Vitro α-Amylase and Protease Activity Is Related to the Virulence of Aspergillus flavus Isolates. Journal of Food Protection, 2001, 64, 401-404.	0.8	39
84	Aspergillus flavus and Aflatoxin Contamination of Leguminous Trees of the Sonoran Desert in Arizona. Phytopathology, 2001, 91, 913-919.	1.1	37
85	Aspergillus flavus resident in Kenya: High genetic diversity in an ancient population primarily shaped by clonal reproduction and mutation-driven evolution. Fungal Ecology, 2018, 35, 20-33.	0.7	37
86	Field efficacy of two atoxigenic biocontrol products for mitigation of aflatoxin contamination in maize and groundnut in Ghana. Biological Control, 2020, 150, 104351.	1.4	37
87	Wheat Seed Colonized with Atoxigenic Aspergillus flavus: Characterization and Production of a Biopesticide for Aflatoxin Control. Biocontrol Science and Technology, 1999, 9, 529-543.	0.5	36
88	Use of Pyrosequencing to Quantify Incidence of a Specific <i>Aspergillus flavus</i> Strain Within Complex Fungal Communities Associated with Commercial Cotton Crops. Phytopathology, 2008, 98, 282-288.	1.1	36
89	Substrate Utilization byAspergillus flavusin Inoculated Whole Corn Kernels and Isolated Tissues. Journal of Agricultural and Food Chemistry, 2005, 53, 2351-2357.	2.4	35
90	Aspergillus texensis: A Novel Aflatoxin Producer with S Morphology from the United States. Toxins, 2018, 10, 513.	1.5	34

#	Article	IF	CITATIONS
91	Aflatoxin in Chili Peppers in Nigeria: Extent of Contamination and Control Using Atoxigenic Aspergillus flavus Genotypes as Biocontrol Agents. Toxins, 2019, 11, 429.	1.5	34
92	Atoxigenic <i>Aspergillus flavus</i> Isolates Endemic to Almond, Fig, and Pistachio Orchards in California with Potential to Reduce Aflatoxin Contamination in these Crops. Plant Disease, 2019, 103, 905-912.	0.7	33
93	Spatial distribution of Aspergillus flavus and its toxigenic strains on commercial cottonseed from south Texas and its relationship to aflatoxin contamination. Plant Pathology, 2006, 55, 358-366.	1.2	30
94	Improved Media for Selecting Nitrate-Nonutilizing Mutants inAspergillus Flavus. Mycologia, 1991, 83, 311-316.	0.8	29
95	Using Predictions Based on Geostatistics to Monitor Trends in Aspergillus flavus Strain Composition. Phytopathology, 1999, 89, 761-769.	1.1	29
96	Time Course Study of Substrate Utilization byAspergillus flavusin Medium Simulating Corn (Zea mays) Kernels. Journal of Agricultural and Food Chemistry, 2002, 50, 648-652.	2.4	28
97	Divergent regulation of aflatoxin production at acidic pH by two Aspergillus strains. Mycopathologia, 2005, 159, 579-581.	1.3	28
98	The Relationship of Gin Date to Aflatoxin Contamination of Cottonseed in Arizona. Plant Disease, 1999, 83, 279-285.	0.7	25
99	Fluorescent siderophore-mediated iron deprivation—a contingent biological control mechanism. Soil Biology and Biochemistry, 1988, 20, 573-574.	4.2	24
100	Promoter elements in the aflatoxin pathway polyketide synthase gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1576, 171-175.	2.4	24
101	Influence of the Host Contact Sequence on the Outcome of Competition amongAspergillus flavusIsolates during Host Tissue Invasion. Applied and Environmental Microbiology, 2011, 77, 1691-1697.	1.4	24
102	Formulating Atoxigenic Aspergillus flavus for Field Release. Biocontrol Science and Technology, 1995, 5, 175-184.	0.5	23
103	A Morphologically Distinct Strain of Aspergillus nomius. Mycologia, 1998, 90, 618.	0.8	23
104	Expression of Pectinase Activity Among Aspergillus Flavus Isolates from Southwestern and Southeastern United States. Mycopathologia, 2004, 157, 333-338.	1.3	23
105	The vegetative compatibility group to which the US biocontrol agent Aspergillus flavus AF 36 belongs is also endemic to Mexico. Journal of Applied Microbiology, 2016, 120, 986-998.	1.4	23
106	Comparative Genomics of Aspergillus flavus S and L Morphotypes Yield Insights into Niche Adaptation. G3: Genes, Genomes, Genetics, 2018, 8, 3915-3930.	0.8	23
107	Molecular Analysis of S-morphology Aflatoxin Producers From the United States Reveals Previously Unknown Diversity and Two New Taxa. Frontiers in Microbiology, 2020, 11, 1236.	1.5	23
108	Nutrient Environments Influence Competition among Aspergillus flavus Genotypes. Applied and Environmental Microbiology, 2013, 79, 1473-1480.	1.4	22

#	Article	IF	CITATIONS
109	Frequent Shifts in <i>Aspergillus flavus</i> Populations Associated with Maize Production in Sonora, Mexico. Phytopathology, 2018, 108, 412-420.	1.1	21
110	Degradation of Aflatoxins B ₁ by Atoxigenic <i>Aspergillus flavus</i> Biocontrol Agents. Plant Disease, 2021, 105, 2343-2350.	0.7	21
111	Mycological Aspects of Aflatoxin Formation. , 1994, , 327-346.		20
112	Expression of elastinolytic activity among isolates inAspergillus SectionFlavi. Mycopathologia, 1995, 131, 115-120.	1.3	20
113	Aflatoxin-producing fungi in maize field soils from sea level to over 2000Âmasl: A three year study in Sonora, Mexico. Fungal Biology, 2015, 119, 191-200.	1.1	20
114	Community Structure of <i>Aspergillus flavus</i> and <i>A. parasiticus</i> in Major Almond-Producing Areas of California, United States. Plant Disease, 2015, 99, 1161-1169.	0.7	19
115	Effect of Harvest Date on Aflatoxin Contamination of Cottonseed. Plant Disease, 1991, 75, 312.	0.7	19
116	Simple fluorescence method for rapid estimation of aflatoxin levels in a solid culture medium. Applied and Environmental Microbiology, 1988, 54, 274-276.	1.4	19
117	Modulation of Sporulation of Alternaria Tageticaby Carbon Dioxide. Mycologia, 1987, 79, 508-513.	0.8	18
118	Distribution and incidence of atoxigenic Aspergillus flavus VCG in tree crop orchards in California: A strategy for identifying potential antagonists, the example of almonds. International Journal of Food Microbiology, 2018, 265, 55-64.	2.1	18
119	Fungal communities associated with almond throughout crop development: Implications for aflatoxin biocontrol management in California. PLoS ONE, 2018, 13, e0199127.	1.1	18
120	Improved Media for Selecting Nitrate-Nonutilizing Mutants in Aspergillus flavus. Mycologia, 1991, 83, 311.	0.8	17
121	Production of conidia of Alternaria cassiae with alginate pellets. Biological Control, 1992, 2, 278-281.	1.4	17
122	Description of a Distinctive Aflatoxin-Producing Strain of Aspergillus nomius that Produces Submerged Sclerotia. Mycopathologia, 2009, 168, 193-201.	1.3	17
123	Purification and partial characterization of an elastinolytic proteinase from Aspergillus flavus culture filtrates. Applied Microbiology and Biotechnology, 1996, 46, 138-142.	1.7	16
124	The Effect of Sterilization, pH, Filler and Spore Inoculum Concentration on the Preparation of Alginate Pellets. Biocontrol Science and Technology, 1997, 7, 3-10.	0.5	16
125	Effects of Cultivar and Boll Age on Aflatoxin in Cottonseed After Inoculation with Aspergillus flavus at Simulated Exit Holes of the Pink Bollworm. Plant Disease, 1989, 73, 489.	0.7	16
126	Using aCGH to study intraspecific genetic variability in two pathogenic molds,Aspergillus fumigatusandAspergillus flavus. Medical Mycology, 2009, 47, S34-S41.	0.3	15

#	Article	IF	CITATIONS
127	Aflatoxin Contamination of Non-cultivated Fruits in Zambia. Frontiers in Microbiology, 2019, 10, 1840.	1.5	15
128	Integration of Enzyme-Linked Immunosorbent Assay with Conventional Chromatographic Procedures for Quantitation of Aflatoxin in Individual Cotton Bolls, Seeds, and Seed Sections. Journal of the Association of Official Analytical Chemists, 1990, 73, 581-584.	0.2	14
129	Potential of animal myeloperoxidase to protect plants from pathogens. Biochemical and Biophysical Research Communications, 1991, 178, 1202-1204.	1.0	14
130	Susceptibility to Aflatoxin Contamination among Maize Landraces from Mexico. Journal of Food Protection, 2014, 77, 1554-1562.	0.8	13
131	Preharvest Aflatoxin Contamination. ACS Symposium Series, 1993, , 272-292.	0.5	12
132	Identification of a Major Xylanase from Aspergillus flavus as a 14-kD Protein. Mycopathologia, 2011, 172, 299-305.	1.3	11
133	<i>Aspergillus parasiticus</i> Communities Associated with Sugarcane in the Rio Grande Valley of Texas: Implications of Global Transport and Host Association Within <i>Aspergillus</i> Section <i>Flavi</i> . Phytopathology, 2014, 104, 462-471.	1.1	11
134	Biotransformation of aflatoxin B1 by Lactobacillus helviticus FAM22155 in wheat bran by solid-state fermentation. Food Chemistry, 2021, 341, 128180.	4.2	11
135	A rose bengal amended medium for selecting nitrate-metabolism mutants from fungi. Canadian Journal of Botany, 1995, 73, 680-682.	1.2	10
136	Founder events influence structures of Aspergillus flavus populations. Environmental Microbiology, 2020, 22, 3522-3534.	1.8	10
137	Aflasafe SN01 is the First Biocontrol Product Approved for Aflatoxin Mitigation in Two Nations, Senegal and The Gambia. Plant Disease, 2021, 105, 1461-1473.	0.7	10
138	Performance of Broilers Fed with Maize Colonized by Either Toxigenic or Atoxigenic Strains of Aspergillus flavus with and without an Aflatoxin-Sequestering Agent. Toxins, 2019, 11, 565.	1.5	9
139	Controlling afl atoxins in maize in Africa: strategies, challenges and opportunities for improvement. Burleigh Dodds Series in Agricultural Science, 2017, , 371-394.	0.1	9
140	Triadimenol stimulates aflatoxin production by Aspergillus flavus in vitro. Mycological Research, 1990, 94, 1023-1025.	2.5	8
141	Effects of oilseed storage proteins on aflatoxin production byAspergillus flavus. JAOCS, Journal of the American Oil Chemists' Society, 1998, 75, 1085-1089.	0.8	8
142	No Effect of Soybean Lipoxygenase on Aflatoxin Production in Aspergillus flavus–Inoculated Seeds. Journal of Food Protection, 2002, 65, 1984-1987.	0.8	8
143	Monitoring Aspergillus flavus Genotypes in a Multi-Genotype Aflatoxin Biocontrol Product With Quantitative Pyrosequencing. Frontiers in Microbiology, 2019, 10, 2529.	1.5	8
144	Assessment of willingness-to-pay for Aflasafe KE01, a native biological control product for aflatoxin management in Kenya. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2020, 37, 1951-1962.	1.1	8

#	Article	IF	CITATIONS
145	Phenotypic Differentiation of Two Morphologically Similar Aflatoxin-Producing Fungi from West Africa. Toxins, 2020, 12, 656.	1.5	8
146	Stability of Colletotrichum truncatum in Culture Influences Mycoherbicide Efficacy. Mycologia, 1994, 86, 397.	0.8	6
147	Selection of Atoxigenic Aspergillus flavus for Potential Use in Aflatoxin Prevention in Shandong Province, China. Journal of Fungi (Basel, Switzerland), 2021, 7, 773.	1.5	6
148	Demonstration of aflatoxin inhibitory activity in a cotton seed coat xylan. Applied and Environmental Microbiology, 1995, 61, 4409-4412.	1.4	6
149	Aflatoxin in Arizona cottonseed: Increase in toxin formation during field drying of bolls. Archives of Environmental Contamination and Toxicology, 1989, 18, 416-420.	2.1	5
150	Effects of oilseed storage proteins on aflatoxin production by aspergillus flavus. JAOCS, Journal of the American Oil Chemists' Society, 1998, 75, 1085-1089.	0.8	5
151	Raffinose content may influence cottonseed susceptibility to aflatoxin contamination. JAOCS, Journal of the American Oil Chemists' Society, 1999, 76, 883-886.	0.8	5
152	Methods to Sample Air Borne Propagules of Aspergillus flavus. European Journal of Plant Pathology, 2006, 114, 357-362.	0.8	5
153	Influence of Wounding and Temperature on Resistance of Maize Landraces From Mexico to Aflatoxin Contamination. Frontiers in Plant Science, 2020, 11, 572264.	1.7	5
154	Temperature Influences on Interactions Among Aflatoxigenic Species of Aspergillus Section Flavi During Maize Colonization. Frontiers in Fungal Biology, 2021, 2, .	0.9	4
155	Alternaria tageticaon Marigold in New Jersey. Plant Disease, 1986, 70, 1159d.	0.7	3
156	Distribution of active ingredients of a commercial aflatoxin biocontrol product in naturally occurring fungal communities across Kenya. Microbial Biotechnology, 2021, 14, 1331-1342.	2.0	3
157	Conservation and Loss of a Putative Iron Utilization Gene Cluster among Genotypes of Aspergillus flavus. Microorganisms, 2021, 9, 137.	1.6	2
158	Pre-Ripening damage to cottonseed byaspergillus flavus is not influenced by seed coat permeability. JAOCS, Journal of the American Oil Chemists' Society, 1991, 68, 522-523.	0.8	1
159	Resistance of maize landraces from Mexico to aflatoxin contamination: influence of aflatoxin-producing fungi genotype and length of incubation. European Journal of Plant Pathology, 0, , 1.	0.8	1
160	Spatial and Temporal Population Dynamics of <i>Aspergillus flavus</i> in Commercial Pistachio Orchards in Arizona. Plant Health Progress, 2022, 23, 272-280.	0.8	1
161	Determining non-toxigenic Aspergillus flavus isolates on red pepper. Turk Hijiyen Ve Deneysel Biyoloji Dergisi Turkish Bulletin of Hygiene and Experimental Biology, 2016, 73, 323-332.	0.1	0
162	Development and scale-up of bioprotectants to keep staple foods safe from aflatoxin contamination in Africa. Burleigh Dodds Series in Agricultural Science, 2021, , 587-628.	0.1	0

#	Article	IF	CITATIONS
163	Genetic diversity of Aspergillus flavus associated with chili in Nigeria and identification of haplotypes with potential in aflatoxin mitigation. Plant Disease, 2022, , .	0.7	0