Ian R Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9042388/publications.pdf Version: 2024-02-01

ΙΔΝ Ρ ΤΗΟΜΑς

#	Article	IF	CITATIONS
1	Explaining NOMAD D/H Observations by Cloudâ€Induced Fractionation of Water Vapor on Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	11
2	Removal of straylight from ExoMars NOMAD-UVIS observations. Planetary and Space Science, 2022, 218, 105432.	1.7	3
3	Calibration of NOMAD on ESA's ExoMars Trace Gas Orbiter: Part 1 – The Solar Occultation channel. Planetary and Space Science, 2022, 218, 105411.	1.7	8
4	Vertical Aerosol Distribution and Mesospheric Clouds From ExoMars UVIS. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	6
5	Martian CO ₂ Ice Observation at High Spectral Resolution With ExoMars/TGO NOMAD. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	5
6	Calibration of the NOMAD-UVIS data. Planetary and Space Science, 2022, 218, 105504.	1.7	5
7	Variations in Vertical CO/CO ₂ Profiles in the Martian Mesosphere and Lower Thermosphere Measured by the ExoMars TGO/NOMAD: Implications of Variations in Eddy Diffusion Coefficient. Geophysical Research Letters, 2022, 49, .	4.0	7
8	Density and Temperature of the Upper Mesosphere and Lower Thermosphere of Mars Retrieved From the OI 557.7Ânm Dayglow Measured by TGO/NOMAD. Journal of Geophysical Research E: Planets, 2022, 127,	3.6	6
9	The Mars Oxygen Visible Dayglow: A Martian Year of NOMAD/UVIS Observations. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	2
10	Planetâ€Wide Ozone Destruction in the Middle Atmosphere on Mars During Global Dust Storm. Geophysical Research Letters, 2022, 49, .	4.0	7
11	The Deuterium Isotopic Ratio of Water Released From the Martian Caps as Measured With TGO/NOMAD. Geophysical Research Letters, 2022, 49, .	4.0	15
12	Comprehensive investigation of Mars methane and organics with ExoMars/NOMAD. Icarus, 2021, 357, 114266.	2.5	27
13	Machine learning for automatic identification of new minor species. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 259, 107361.	2.3	2
14	Transient HCl in the atmosphere of Mars. Science Advances, 2021, 7, .	10.3	37
15	Water heavily fractionated as it ascends on Mars as revealed by ExoMars/NOMAD. Science Advances, 2021, 7, .	10.3	31
16	First Observation of the Oxygen 630Ânm Emission in the Martian Dayglow. Geophysical Research Letters, 2021, 48, e2020GL092334.	4.0	8
17	Probing the Atmospheric Cl Isotopic Ratio on Mars: Implications for Planetary Evolution and Atmospheric Chemistry. Geophysical Research Letters, 2021, 48, e2021GL092650.	4.0	7
18	Annual Appearance of Hydrogen Chloride on Mars and a Striking Similarity With the Water Vapor Vertical Distribution Observed by TGO/NOMAD. Geophysical Research Letters, 2021, 48, e2021GL092506.	4.0	15

IAN R THOMAS

#	Article	IF	CITATIONS
19	The climatology of carbon monoxide on Mars as observed by NOMAD nadir-geometry observations. Icarus, 2021, 362, 114404.	2.5	11
20	Martian water loss to space enhanced by regional dust storms. Nature Astronomy, 2021, 5, 1036-1042.	10.1	40
21	ExoMars TGO/NOMADâ€UVIS Vertical Profiles of Ozone: 2. The Highâ€Altitude Layers of Atmospheric Ozone. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006834.	3.6	14
22	A Global and Seasonal Perspective of Martian Water Vapor From ExoMars/NOMAD. Journal of Geophysical Research E: Planets, 2021, 126, .	3.6	8
23	ExoMars TGO/NOMADâ€UVIS Vertical Profiles of Ozone: 1. Seasonal Variation and Comparison to Water. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006837.	3.6	18
24	First Detection and Thermal Characterization of Terminator CO ₂ Ice Clouds With ExoMars/NOMAD. Geophysical Research Letters, 2021, 48, .	4.0	12
25	Calibration of NOMAD on ESA's ExoMars Trace Gas Orbiter: Part 2 – The Limb, Nadir and Occultation (LNO) channel. Planetary and Space Science, 2021, , 105410.	1.7	3
26	Explanation for the Increase in Highâ€Altitude Water on Mars Observed by NOMAD During the 2018 Global Dust Storm. Geophysical Research Letters, 2020, 47, e2019GL084354.	4.0	62
27	Strong Variability of Martian Water Ice Clouds During Dust Storms Revealed From ExoMars Trace Gas Orbiter/NOMAD. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006250.	3.6	39
28	Detection of green line emission in the dayside atmosphere of Mars from NOMAD-TGO observations. Nature Astronomy, 2020, 4, 1049-1052.	10.1	13
29	No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature, 2019, 568, 517-520.	27.8	111
30	Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature, 2019, 568, 521-525.	27.8	107
31	Development of a knowledge management system for the NOMAD instrument onboard the ExoMars TGO spacecraft. Aircraft Engineering and Aerospace Technology, 2019, 92, 81-92.	1.2	2
32	Water Vapor Vertical Profiles on Mars in Dust Storms Observed by TGO/NOMAD. Journal of Geophysical Research E: Planets, 2019, 124, 3482-3497.	3.6	88
33	Methane on Mars: New insights into the sensitivity of CH4 with the NOMAD/ExoMars spectrometer through its first in-flight calibration. Icarus, 2019, 321, 671-690.	2.5	32
34	The VenSpec suite on the ESA EnVision mission to Venus. , 2019, , .		16
35	Investigations of the Mars Upper Atmosphere with ExoMars Trace Gas Orbiter. Space Science Reviews, 2018, 214, 1.	8.1	13
36	NOMAD, an Integrated Suite of Three Spectrometers for the ExoMars Trace Gas Mission: Technical Description, Science Objectives and Expected Performance. Space Science Reviews, 2018, 214, 1.	8.1	95

Ian R Thomas

#	Article	IF	CITATIONS
37	The Oxford space environment goniometer: A new experimental setup for making directional emissivity measurements under a simulated space environment. Review of Scientific Instruments, 2017, 88, 124502.	1.3	10
38	NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 2—design, manufacturing, and testing of the ultraviolet and visible channel. Applied Optics, 2017, 56, 2771.	2.1	40
39	Improved algorithm for the transmittance estimation of spectra obtained with SOIR/Venus Express. Applied Optics, 2016, 55, 9275.	2.1	21
40	Constraints on olivineâ€rich rock types on the Moon as observed by Diviner and M ³ : Implications for the formation of the lunar crust. Journal of Geophysical Research E: Planets, 2016, 121, 1342-1361.	3.6	29
41	Optical and radiometric models of the NOMAD instrument part II: the infrared channels - SO and LNO. Optics Express, 2016, 24, 3790.	3.4	25
42	SINBAD flight software, the on-board software of NOMAD in ExoMars 2016. Proceedings of SPIE, 2016, , .	0.8	0
43	Optical and radiometric models of the NOMAD instrument part I: the UVIS channel. Optics Express, 2015, 23, 30028.	3.4	26
44	NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 1—design, manufacturing and testing of the infrared channels. Applied Optics, 2015, 54, 8494.	2.1	58
45	Global assessment of pure crystalline plagioclase across the Moon and implications for the evolution of the primary crust. Journal of Geophysical Research E: Planets, 2014, 119, 1516-1545.	3.6	86
46	A new experimental setup for making thermal emission measurements in a simulated lunar environment. Review of Scientific Instruments, 2012, 83, 124502.	1.3	30
47	Thermal infrared emissivity measurements under a simulated lunar environment: Application to the Diviner Lunar Radiometer Experiment. Journal of Geophysical Research, 2012, 117, .	3.3	50
48	Laboratory emissivity measurements of the plagioclase solid solution series under varying environmental conditions. Journal of Geophysical Research, 2012, 117, .	3.3	50
49	The Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Space Science Reviews, 2010, 150, 125-160.	8.1	309
50	Global Silicate Mineralogy of the Moon from the Diviner Lunar Radiometer. Science, 2010, 329, 1507-1509.	12.6	154
51	Highly Silicic Compositions on the Moon. Science, 2010, 329, 1510-1513.	12.6	175